Skip to main content

Advertisement

Log in

The causes of the selection of biological nitrification inhibition (BNI) in relation to ecosystem functioning and a research agenda to explore them

  • Review
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Biological nitrification inhibition (BNI) has already led to several studies mainly focused on underlying molecular mechanisms and applications to agriculture. We argue that it is also important to study BNI more systematically from the ecological and evolutionary points of view to understand its implications for plants and soil nitrifiers as well as its consequences for ecosystems. Therefore, we propose here a dedicated research agenda identifying the most critical research questions: (1) How is BNI distributed across plant phylogeny and why has it been selected? (2) What are the costs-to-benefits balance of producing BNI compounds and the relative impacts on BNI evolution? (3) Can we understand the evolutionary pressures leading to BNI and identify the environmental conditions favorable to BNI plants? (4) How has BNI coevolved with plant preference for ammonium vs. nitrate? (5) Diverse BNI compounds and various inhibition mechanisms have been described, but implications of this diversity are not understood. Does it allow inhibition of various groups of nitrifiers? (6) Does this diversity of BNI compounds increase the efficiency, spatial extension, and duration of BNI effect? (7) What are the impacts of BNI compounds on other soil functions? (8) Can field experiments, coupled to scanning of the diversity of BNI capabilities within plant communities, evaluate whether BNI influences plant-plant competition and plant coexistence? (9) Can field quantification of various nitrogen (N) fluxes assess whether BNI lead to more efficient N cycling with lower losses and hence increased primary production? (10) Can the impact of BNI on N budgets and climate (through its impact on N2O emissions and its indirect impact on carbon budget) be evaluated at the regional scale? We discuss why implementing this research program is crucial both for the sake of knowledge and to develop applications of BNI for agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbadie L, Lata JC, Tavernier V (2000) The impact of graminaceous perennials on a rare resource: nitrogen. In: Floret Ch, Pontanier R (Eds) Fallows in tropical Africa. Roles, Management, Alternatives. John Libbey Eurotext, Paris (ISBN 2742003010), pp. 189–193

  • Abbadie L, Lata JC (2005) 40 years of studies on the relationships between grass species, N turnover and nutrient cycling in the Ivory Coast (Côte d’Ivoire). In: Jarvis SS, Murray PJ, Roker JA (Eds) Optimisation of nutrient cycling and soil quality for sustainable grasslands. Wageningen Academic Publishers, Wageningen, The Netherlands (ISBN 978–90–76998–72–5)

  • Abbadie L, Gignoux J, Le Roux X, Lepage M (2006) Lamto: structure, functioning, and dynamics of a Savanna Ecosystem. Springer, New York

    Book  Google Scholar 

  • Anest A, Charles-Dominique T, Maurin O, Millan M, Edelin C, Tomlinson KW (2021) Evolving the structure: climatic and developmental constraints on the evolution of plant architecture. A case study in Euphorbia. New Phytol 231:1278–1295. https://doi.org/10.1111/nph.17296

    Article  PubMed  Google Scholar 

  • Assémien FL, Pommier T, Gonnety JT, Gervaix J, Le Roux X (2017) Adaptation of soil nitrifiers to very low nitrogen level jeopardizes the efficiency of chemical fertilization in west African moist savannas. Sci Rep 7:10275. https://doi.org/10.1038/s41598-017-10185-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assémien F, Cantarel A, Florio A, Lerondelle C, Pommier T, Gonnety TJ, Le Roux X (2019) Different groups of nitrite-reducers and N2O-reducers have distinct ecological niches and functional roles in West African cultivated soils. Soil Biol Biochem 129:39–47. https://doi.org/10.1016/j.soilbio.2018.11.003

    Article  CAS  Google Scholar 

  • Baligar VC, Bennett OL (1986) NPK-fertilizer efficiency — a situation analysis for the tropics. Fertil Res 10:147–164

    Article  Google Scholar 

  • Bardgett RD, Wardle D (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84:2258–2268. https://doi.org/10.1890/02-0274

    Article  Google Scholar 

  • Bardon C, Poly F, el Zahar HF, Le Roux X, Simon L, Meiffren G, Comte G, Rouifed S, Piola F (2017) Biological denitrification inhibition (BDI) with procyanidins induces modification of root traits, growth and N status in Fallopia x bohemica. Soil Biol Biochem 107:41–49. https://doi.org/10.1016/j.soilbio.2016.12.009

    Article  CAS  Google Scholar 

  • Bardon C, Misery B, Piola F, Poly F, Le Roux X (2018) Control of soil N cycle processes by Pteridium aquilinum and Erica cinerea in heathlands along a pH gradient. Ecosphere 9:e02426. https://doi.org/10.1002/ecs2.2426

    Article  Google Scholar 

  • Barot S, Bornhofen S, Boudsocq S, Raynaud X, Loeuille N (2016) Evolution of nutrient acquisition: when space matters. Funct Ecol 30:283–294. https://doi.org/10.1111/1365-2435.12494

    Article  Google Scholar 

  • Barot S, Allard V, Cantarel A, Enjalbert J, Gauffreteau A, Goldringer I, Lata J-C, Le Roux X, Niboyet A, Porcher E (2017) Designing mixtures of varieties for multifunctional agriculture with the help of ecology. Rev Agron Sustain Dev 37:13. https://doi.org/10.1007/s13593-017-0418-x

    Article  Google Scholar 

  • Baruch Z, Ludlow MM, Davis R (1985) Photosynthetic responses of native and introduced C4 grasses from Venezuelan savannas. Oecologia 67:388–393. https://doi.org/10.1007/BF00384945

    Article  CAS  PubMed  Google Scholar 

  • Bate GC (1981) Nitrogen cycling in savanna ecosystems. In: Clark FE, Roswall T (Eds) Terrestrial Nitrogen Cycles. Ecol. Bull., Stockholm, pp. 463–475

  • Becker M, Johnson D (1997) The role of legume fallows in intensified upland rice-based system of West Africa. Nutr Cycl Agroecosyst 53:71–81. https://doi.org/10.1023/A:1009767530024

    Article  Google Scholar 

  • Bond WJ (2016) Ancient grasslands at risk. Science 351:120–122. https://www.science.org/doi/10.1126/science.aad5132

    Article  CAS  PubMed  Google Scholar 

  • Boudsocq S, Lata JC, Mathieu J, Abbadie L, Barot S (2009) Modelling approach to analyze the effects of nitrification inhibition on primary production. Funct Ecol 23:220–230. https://doi.org/10.1111/j.1365-2435.2008.01476.x

    Article  Google Scholar 

  • Boudsocq S, Niboyet A, Lata J-C, Raynaud X, Loeuille N, Mathieu J, Blouin M, Abbadie L, Barot S (2012) Plant preference for ammonium versus nitrate: a neglected determinant of ecosystem functioning? Am Nat 180:60–69. https://doi.org/10.1086/665997

    Article  CAS  PubMed  Google Scholar 

  • Bouwman AF, Beusen AH, Griffioen J, Van Groenigen JW, Hefting MM, Oenema O, Van Puijenbroek PJ, Seitzinger S, Slomp CP, Stehfest E (2013) Global trends and uncertainties in terrestrial denitrification and N2O emissions. Philos Trans R Soc B-Biol Sci 368:20130112.https://doi.org/10.1098/rstb.2013.0112

    Article  CAS  Google Scholar 

  • Britto DT, Siddiqi MY, Glass ADM, Kronzucker HJ (2001) Futile transmembrane NH>4+ cycling: a cellular hypothesis to explain ammonium toxicity in plants. PNAS 98:4255–4258. https://doi.org/10.1073/pnas.061034698

  • Britto DT, Kronzucker HJ (2013) Ecological significance and complexity of N-source preference in plants. Ann Bot 112:957–963. https://doi.org/10.1093/aob/mct157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charles-Dominique T, Davies TJ, Hempson GP, Bezeng BS, Daru BH, Kabongo RM, Maurin O, Muasya AM, van der Bank M, Bond WJ (2016) Spiny plants, mammal browsers, and the origin of African savannas. PNAS 113:E5572-5579. https://doi.org/10.1073/pnas.1607493113

  • Clough TJ, Rochette P, Thomas SM, Pihlatie M, Christiansen JR, Thorman RE (2020) Global research alliance N2O chamber methodology guidelines: design considerations. J Environ Qual 49:1081–1091. https://doi.org/10.1002/jeq2.20117

  • Cook GD (1994) The fate of nutrients during fires in a tropical savanna. Aus J Ecol 19:359–365. https://doi.org/10.1111/j.1442-9993.1994.tb00501.x

  • Coskun D, Britto DT, Shi W, Kronzucker HJ (2017) Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat Plants 3:17074. https://doi.org/10.1038/nplants.2017.74

  • Coskun D, Britto DT, Shi W, Kronzucker HJ (2017b) How Plant Root Exudates Shape the Nitrogen Cycle. Trends Plant Sci 22:661–673. https://doi.org/10.1016/j.tplants.2017.05.004

  • Cox TS, Glover JD, Van Tassel DL, Cox CM, DeHaan LR (2006) Prospects for developping perennial grain crops. Bioscience 56:649–659. https://doi.org/10.1641/0006-3568(2006)56[649:PFDPGC]2.0.CO;2

    Article  Google Scholar 

  • Craine JM (2009) Resource strategies of wild plants. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509. https://doi.org/10.1038/nature16461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Mazancourt C, Loreau M, Abbadie L (1998) Grazing optimization and nutrient cycling: when do herbivores enhance plant production? Ecology 79:2242–2252. https://doi.org/10.1890/0012-9658(1998)079[2242:GOANCW]2.0.CO;2

    Article  Google Scholar 

  • Del Grosso SJ, Parton WJ, Mosier AR, Ojima DS, Kulmala AE, Phongpan S (2000) General model for N2O and N2 gas emissions from soils due to dentrification. Glob Biogeochem Cycles 14:1045–1060. https://doi.org/10.1029/1999GB001225

  • Delmas R, Lacaux JP, Menaut JC, Abbadie L, Le Roux X, Helas G, Lobert G (1995) Nitrogen compound emission from biomass burning in tropical African savannas, FOS/DECAFE 1991 experiment (Lamto, Ivory Coast). J Atmos Chem 22:175–193. https://doi.org/10.1007/BF00708188

    Article  CAS  Google Scholar 

  • Di T, Afzal MR, Yoshihashi T, Deshpande S, Zhu Y, Subbarao GV (2018) Further insights into underlying mechanisms for the release of biological nitrification inhibitors from sorghum roots. Plant Soil 423:99–110. https://doi.org/10.1007/s11104-017-3505-5

    Article  CAS  Google Scholar 

  • Donaldson JM, Henderson GS (1990) Nitrification potential of secondary-succession upland oak forests. Soil Sci Soc Am J 54:892–902. https://doi.org/10.2136/sssaj1990.03615995005400030048x

    Article  CAS  Google Scholar 

  • Edwards EJ, Osborne CP, Strömberg CAE, Smith SA, Consortium CG (2010) The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328:587–591. https://doi.org/10.1126/science.1177216

  • Florio A, Marechal M, Legout A, Creuse Des Chatelliers C, Gervaix J, Didier S, Zeller B, Le Roux X (2021) Influence of biological nitrification inhibition by forest tree species on soil denitrifiers and N2O emissions. Soil Biol Biochem 155:108164. https://doi.org/10.1016/j.soilbio.2021.108164

  • Florio A, Bréfort C, Creuze des Chatelliers C, Gervaix J, Poly F, Zeller B, Le Roux X (2022) Response of denitrifier activity and abundance to reciprocal transfers of soil between Douglas stands and stands of tree species able or unable to inhibit nitrification. Biol Fertil Soil (in press).

  • Gardner JB, Drinkwater LE (2009) The fate of nitrogen in grain cropping systems: a meta-analysis of 15N field experiments. Ecol Appl 19:2167–2184. https://doi.org/10.1890/08-1122.1

    Article  PubMed  Google Scholar 

  • Geritz SAH, Gyllenberg M (2005) Seven answers from adaptive dynamics. J Evol Biol 18:1174–1177. https://doi.org/10.1111/j.1420-9101.2004.00841.x

  • Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties. Wiley, John Wiley, New York

    Google Scholar 

  • Grime JP, Cornelissen JHC, Thompson K, Hodgson JG (1996) Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves. Oikos 77:489–494. https://doi.org/10.2307/3545938

  • Gubry-Rangin C, Novotnik B, Mandi I, Nicol GW, Prosser JI (2017) Temperature responses of soil ammonia-oxidising archaea depend on pH. Soil Biol Biochem 106:61–68. https://doi.org/10.1016/j.soilbio.2016.12.007

    Article  CAS  Google Scholar 

  • Hesselsøe M, Brandt KK, Sorensen J (2001) Quantification of ammonia-oxidizing bacteria in soil using microcolony technique combined with fluorescence in situ hybridization (MCFU–FISH). FEMS Microbiol Ecol 38:87–95. https://doi.org/10.1111/j.1574-6941.2001.tb00886.x

    Article  Google Scholar 

  • Houlton BZ, Sigman DM, Schuur EAG, Hedin LO (2007) A climate-driven switch in plant nitrogen acquisition within tropical forest communities. PNAS 104:8902–8906. https://doi.org/10.1073/pnas.0609935104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • House JI, Archer S, Breshears DD, Scholes RJ, NCEAS Tree-grass Interactions Participants (2003) Conundrums in mixed woody-herbaceous plant systems. J Biogeogr 30:1763–1777. https://doi.org/10.1046/j.1365-2699.2003.00873.x

  • Iizumi T, Mizumoto M, Nakamura K (1998) A bioluminescence assay using Nitrosomonas europaea for rapid and sensitive detection of nitrification inhibitors. Appl Environ Microbiol 64:3656–3662. https://doi.org/10.1128/aem.64.10.3656-3662.1998

  • Ishikawa T, Subbarao GV, Ito O, Okada K (2003) Suppression of nitrification and nitrous oxide emission by the tropical grass Brachiaria humidicola. Plant Soil 255:413–419. https://doi.org/10.1023/A:1026156924755https://doi.org/10.1023/A:1026156924755

  • Jordan CF, Todd RL, Escalante G (1979) Nitrogen conservation in a tropical rain forest. Oecologia 39:123–128. https://doi.org/10.1007/BF00346002

  • Kaisermann A, Roguet A, Nunan N, Maron P-A, Ostle N, Lata J-C (2013) Agricultural management affects the response of soil bacterial community structure and respiration to water-stress. Soil Biol Biochem 66:69–77. https://doi.org/10.1016/j.soilbio.2013.07.001

  • Karwat H, Egenolf K, Nunez J, Rao I, Rasche F, Arango J, Moreta D, Arevalo A, Cadisch G (2018) Low 15N natural abundance in shoot tissue of Brachiaria humidicola is an indicator of reduced N losses due to biological nitrification inhibition (BNI). Front Microbiol 9:2383. https://doi.org/10.3389/fmicb.2018.02383

  • Kaur-Bhambra J, Wardak DLR, Prosser JI, Gubry-Rangin C (2022) Revisiting plant biological nitrification inhibition efficiency using multiple archaeal and bacterial ammonia-oxidising cultures. Biol Fertil Soils. https://doi.org/10.1007/s00374-020-01533-1

  • Koffi KF (2019) Impact of fire on the demography of savannah grasses (Lamto, Ivory Coast). Biodiversité et Ecologie. PhD Thesis, Sorbonne Université, Paris, France; Nangui Abrogoua University, Abidjan, Ivory Coast. NNT: 2019SORUS161

  • Konaré S, Gignoux J, Raynaud X, Lata J-C, Boudsocq S, Barot S (2019) Effects of mineral nitrogen partitioning on tree-grass coexistence in West African savannas. Ecosystems 22:1676–1690. https://doi.org/10.1007/s10021-019-00365-x

  • Konaré S, Boudsocq S, Gignoux J, Lata JC, Raynaud X, Barot S (2021) Spatial heterogeneity in nitrification and soil exploration by trees favour source-sink nitrogen dynamics in a humid savanna: a modeling approach. Funct Ecol 35:976–988. https://doi.org/10.1111/1365-2435.13762

  • Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529. https://doi.org/10.1146/annurev.micro.55.1.485

  • Laffite A, Florio A, Andrianarisoa S, Creuze des Chatelliers C, Schloter-Hai B, Ndaw SM, Periot C, Schloter M, Zeller B, Poly F, Le Roux X (2020) Biological inhibition of soil nitrification by forest tree species affects Nitrobacter populations. Environ Microbiol 22:1141–1153. https://doi.org/10.1111/1462-2920.14905

  • Lata JC (1999) Interactions entre processus microbiens, cycle des nutriments et fonctionnement du couvert herbacé : cas de la nitrification dans les sols d’une savane humide de Côte d’Ivoire sous couvert à Hyparrhenia diplandra. Doctoral thesis of Pierre and Marie Curie University, Paris VI, France, 197 pp.

  • Lata JC, Durand J, Lensi R, Abbadie L (1999) Stable coexistence of contrasted nitrification statuses in a wet tropical savanna ecosystem. Funct Ecol 13:762–768. https://doi.org/10.1046/j.1365-2435.1999.00380.x

  • Lata JC, Guillaume K, Degrange V, Abbadie L, Lensi R (2000) Relationships between root density of the African grass Hyparrhenia diplandra and nitrification at the decimetric scale: an inhibition-stimulation balance hypothesis. Proc R Soc B-Biol Sci 267:595–600. https://doi.org/10.1098/rspb.2000.1043

    Article  CAS  Google Scholar 

  • Lata JC, Degrange V, Raynaud X, Maron P-A, Lensi R, Abbadie L (2004) Grass populations control nitrification in savanna soils. Funct Ecol 18:605–611. https://doi.org/10.1111/j.0269-8463.2004.00880.x

  • Laughlin DC (2011) Nitrification is linked to dominant leaf traits rather than functional diversity. J Ecol 99:1091–1099. https://doi.org/10.1111/j.1365-2745.2011.01856.x

  • Le Roux X, Bardy M, Loiseau P, Louault F (2003) Stimulation of soil nitrification and denitrification by grazing in grasslands: do changes in plant species composition matter? Oecologia 137:417–425. https://doi.org/10.1007/s00442-003-1367-4

  • Le Roux X, Poly F, Currey P, Commeaux C, Hai B, Nicol GW, Prosser JI, Schloter M, Attard E, Klumpp K (2008) Effects of aboveground grazing on coupling among nitrifier activity, abundance and community structure. ISME J 2:221–232. https://doi.org/10.1038/ismej.2007.109

    Article  CAS  PubMed  Google Scholar 

  • Le Roux X, Bouskill NJ, Niboyet A, Barthes L, Dijkstra P, Field CB, Hungate BA, Lerondelle C, Pommier T, Tang J, Terada A, Tourna M, Poly F (2016) Predicting the responses of soil nitrite-oxidizers to multi-factorial global change: a trait-based approach. Front Microbiol 7:628 https://doi.org/10.3389/fmicb.2016.00628

  • Lodhi MAK (1978) Comparative inhibition of nitrifiers and nitrification in a forest community as a result of the allelopathic nature of various tree species. Am J Bot 65:1135–1137. https://doi.org/10.1002/j.1537-2197.1978.tb06181.x

    Article  CAS  Google Scholar 

  • Loeuille N, Leibold MA (2008) Ecological consequences of evolution in plant defenses in a metacommunity. Theor Popul Biol 74:34–45. https://doi.org/10.1016/j.tpb.2008.04.004

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Zhang X, Jiang J, Kronzucker HJ, Shen W, Shi W (2019) Effects of the biological nitrification inhibitor 1,9-decanediol on nitrification and ammonia oxidizers in three agricultural soils. Soil Biol Biochem 129:48–59. https://doi.org/10.1016/j.soilbio.2018.11.008

    Article  CAS  Google Scholar 

  • Ludwig F, de Kroon H, Berendse F, Prins HHT (2004) The influence of savanna trees on nutrient, water and light availability and the understorey vegetation. Plant Ecol 170:93–105. https://doi.org/10.1023/B:VEGE.0000019023.29636.92

  • Luo W, Wang X, Sardans J, Wang Z, Dijkstra FA, Lü XT, Peñuelas J, Han X (2018) Higher capability of C3 than C4 plants to use nitrogen inferred from nitrogen stable isotopes along an aridity gradient. Plant Soil 428:93–103. https://doi.org/10.1007/s11104-018-3661-2

  • Ma B, Zhou X, Xie Z, Ma W, Liu Y, Feng H, Du G, Ma X, Le Roux X (2019) How do soil microorganisms and plants concurrently respond to N, P and NP additions? Application of the ecological framework of (co-)limitation by multiple resources at community and taxa levels. J Ecol 107:2329–2345.https://doi.org/10.1111/1365-2745.13179

  • McCarty GW (1999) Modes of action of nitrification inhibitors. Biol Fertil Soils 29:1–9.https://doi.org/10.1007/s003740050518

  • McCarty GW, Bremner JM, Schmidt EL (1991) Effects of phenolic acids on ammonia oxidation by terrestrial autotrophic nitrifying microorganisms. FEMS Microbiol Ecol 85:345–349. https://doi.org/10.1111/j.1574-6968.1991.tb04761.x

  • Meiklejohn J (1968) Numbers of nitrifying bacteria in some Rhodesian soils under natural grass and improved pastures. J Appl Ecol 5:291–300. https://doi.org/10.2307/2401563

    Article  Google Scholar 

  • Menge DNL, Levin SA, Hedin LO (2008) Evolutionary tradeoffs can select against nitrogen fixation and thereby maintain nitrogen limitation. PNAS 105:1573–1578. https://doi.org/10.1073/pnas.0711411105

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreta DE, Arango J, Sotelo M, Vergara D, Rincón A, Ishitani M, Castro A, Miles J, Peters M, Tohme J, Subbarao GV, Rao IM (2014) Biological nitrification inhibition (BNI) in Brachiaria pastures: a novel strategy to improve eco-efficiency of crop-livestock systems and to mitigate climate change. Trop Grasslands 2:88–91. https://doi.org/10.17138/tgft(2)88-91

  • Munro PE (1966) Inhibition of nitrite-oxidizers by roots of grass. J Appl Ecol 3:227–229. https://doi.org/10.2307/2401247

  • Nardi P, Laanbroek HJ, Nicol GW, Renella G, Cardinale M, Pietramellara G, Weckwerth W, Trinchera A, Ghatak A, Nannipieri P (2020) Biological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applications. FEMS Microbiol Rev 44:874–908. https://doi.org/10.1093/femsre/fuaa037

  • O’Meara BC (2012) Evolutionary inferences from phylogenies: a review of methods. Annu Rev Ecol Evol Syst 43:267–285. https://doi.org/10.1146/annurev-ecolsys-110411-160331

  • O’Sullivan CA, Fillery IRP, Roper MM, Richards RA (2016) Identification of several wheat landraces with biological nitrification inhibition capacity. Plant Soil 404:61–74. https://doi.org/10.1007/s11104-016-2822-4

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270. https://doi.org/10.1126/science.164.3877.262

  • Oertel C, Matschullat J, Zurba K, Zimmermann F, Erasmi S (2016) Greenhouse gas emissions from soils—A review. Geochemistry 76:327–352? https://doi.org/10.1016/j.chemer.2016.04.002

  • Otaka J, Subbarao GV, Ono H, Yoshihashi T (2022) Biological nitrification inhibition in maize—isolation and identification of hydrophobic inhibitors from root exudates. Biol Fertil Soils. https://doi.org/10.1007/s00374-021-01577-x

  • Pichersky E, Raguso RA (2018) Why do plants produce so many terpenoid compounds? New Phytol 220:692–702.https://doi.org/10.1111/nph.14178

  • Prosser JI (1989) Autotrophic nitrification in bacteria. Adv Microb Physiol 30:125–181. https://doi.org/10.1016/S0065-2911(08)60112-5

  • Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531.https://doi.org/10.1016/j.tim.2012.08.001

  • Prosser JI, Hink L, Gubry-Rangin C, Nicol GW (2019) Nitrous oxide production by ammonia oxidizers: physiological diversity, niche differentiation and potential mitigation strategies. Glob Chang Biol 26:103–118. https://doi.org/10.1111/gcb.14877

    Article  PubMed  Google Scholar 

  • Purchase BS (1974) Evaluation of the claim that grass root exudates inhibit nitrification. Plant Soil 41:527–539. https://doi.org/10.1007/BF02185814

  • Raynaud X, Lata JC, Leadley PW (2006) Soil microbial loop and nutrient uptake by plants: a test using a coupled C: N model of plant–microbial interactions. Plant Soil 287:95–116. https://doi.org/10.1007/s11104-006-9003-9

    Article  CAS  Google Scholar 

  • Rice EL, Pancholy SK (1972) Inhibition of nitrification by climax ecosystems. Am J Bot 59:1033–1040. https://doi.org/10.1002/j.1537-2197.1972.tb10183.x

  • Robertson GP (1984) Nitrification and nitrogen mineralization in a lowland rainforest succession in Costa Rica, Central America. Oecologia 61:99–104. https://doi.org/10.1007/BF00379093

  • Rossiter-Rachor NA, Setterfield SA, Douglas MM, Hutley LB, Cook GD, Schmidt S (2009) Invasive Andropogon gayanus (gamba grass) is an ecosystem transformer of nitrogen relations in Australian savanna. Ecol Appl 19:1546–1560. https://doi.org/10.1890/08-0265.1

    Article  CAS  PubMed  Google Scholar 

  • Rossiter-Rachor NA, Setterfield SA, Hutley LB, McMaster D, Schmidt S, Douglas MM (2017) Invasive Andropogon gayanus (Gamba grass) alters litter decomposition and nitrogen fluxes in an Australian tropical savanna. Sci Rep 7:11705. https://doi.org/10.1038/s41598-017-08893-z

  • Sankaran M, Ratnam J, Hanan NP (2004) Tree-grass coexistence in savannas revisited - insights from an examination of assumptions and mechanisms invoked in existing models. Ecol Lett 7:480–490. https://doi.org/10.1111/j.1461-0248.2004.00596.x

  • Sarr PS, Ando Y, Nakamura S, Deshpande S, Subbarao GV (2020) Sorgoleone release from sorghum roots shapes the composition of nitrifying populations, total bacteria, and archaea and determines the level of nitrification. Biol Fertil Soils 56:145–166. https://doi.org/10.1007/s00374-019-01405-3

  • Shi Y, Wang J, Ao Y, Zhang J, Han J, De X, Guo Z, Mu C, Le Roux X (2021) Responses of soil N2O emissions and their abiotic and biotic drivers to altered rainfall regime and co-occurring wet N deposition in a semi-arid grassland. Global Change Biol 27:4894–4908. https://doi.org/10.1111/gcb.15792

  • Srikanthasamy T (2018) Impact of tree and grass cover on the nitrogen cycle in humid tropical savanna, case of Lamto savanna (pp. 1–231). PhD Thesis, Sorbonne University, Paris, France.

  • Srikanthasamy T, Leloup J, N’Dri AB, Barot S, Gervaix J, Koné AW, Koffi KF, Le Roux X, Raynaud X, Lata J-C (2018) Contrasting effects of grasses and trees on microbial N-cycling in an African humid savanna. Soil Biol Biochem 117:153–163. https://doi.org/10.1016/j.soilbio.2017.11.016

  • Srikanthasamy T, Barot S, Koffi KF, Tambosco K, Marcangeli Y, Carmignac D, N’Dri B, Gervaix J, Le Roux X, Lata J-C (2021) Short-term impact of fire on the total soil microbial and nitrifier communities in a wet savanna. Ecol Evol 11:9958–9969. https://doi.org/10.1002/ece3.7661

    Article  Google Scholar 

  • Stahl DA, de la Torre JR (2012) Physiology and diversity of ammonia-oxidizing Archaea. Annu Rev Microbiol 66:83–101. https://doi.org/10.1146/annurev-micro-092611-150128

  • Stienstra AW, Klein Gunnewiek P, Laanbroek HJ (1994) Repression of nitrification in soils under a climax grassland vegetation. FEMS Microbiol Ecol 14:45–52. https://doi.org/10.1111/j.1574-6941.1994.tb00089.x

  • Stiven G (1952) Production of antibiotic substances by the roots of a grass (Trachypogon plumosus (H. B. K.) Nees) and of Pentanisia variabilis (E. Mey.) Harv. (Rubiaceæ). Nature 170:712–713. https://doi.org/10.1038/170712a0

  • Subbarao GV, Ishikawa T, Ito O, Nakahara K, Wang HY, Berry WL (2006) A bioluminescence assay to detect nitrification inhibitors released from plant roots: a case study with Brachiaria humidicola. Plant Soil 288:101–112. https://doi.org/10.1007/s11104-006-9094-3

  • Subbarao GV, Rondon M, Ito O, Ishikawa T, Rao IM, Nakahara K, Lascano C, Berry WL (2007) Biological nitrification inhibition (BNI)-is it a widespread phenomenon? Plant Soil 294:5–18. https://doi.org/10.1007/s11104-006-9159-3

  • Subbarao GV, Nakahara K, Hurtado MP, Ono H, Moreta DE, Salcedo AF, Yoshihashi AT, Ishikawa T, Ishitani M, Ohnishi-Kameyama M, Yoshida M, Rondon M, Rao IM, Lascano CE, Berry WL, Ito O (2009) Evidence for biological nitrification inhibition in Brachiaria pastures. PNAS 106:17302–17307. https://doi.org/10.1073/pnas.0903694106

  • Subbarao GV, Sahrawat KL, Nakahara K, Ishikawa T, Kishii M, Rao IM, Hash CT, George TS, Srinivasa Rao P, Nardi P, Bonnett D, Berry W, Suenaga K, Lata JC (2012) Biological nitrification inhibition. A novel strategy to regulate nitrification in agricultural systems. Adv Agron 114:249–302. https://doi.org/10.1016/B978-0-12-394275-3.00001-8

  • Subbarao GV, Sahrawat KL, Nakahara K, Rao IM, Ishitani M, Hash CT, Kishii M, Bonnett D, Berry WL, Lata JC (2013) A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI). Ann Bot 112:297–316. https://doi.org/10.1093/aob/mcs230

  • Subbarao GV, Yoshihashi T, Worthington M, Nakahara K, Ando Y, Sahrawat KL, Rao IM, Lata J-C, Kishii M, Braun H-J (2015) Suppression of soil nitrification by plants. Plant Sci 233:155–164. https://doi.org/10.1016/j.plantsci.2015.01.012

  • Subbarao GV, Arango J, Masahiro K, Hooper AM, Yoshihashi T, Ando Y, Nakahara K, Deshpande S, Ortiz-Monasterio I, Ishitani M, Peters M, Chirinda N, Wollenberg L, Lata JC, Gerard B, Tobita S, Rao IM, Braun HJ, Kommerell V, Tohme J, Iwanaga M (2017) Genetic mitigation strategies to tackle agricultural GHG emissions: The case for biological nitrification inhibition technology. Plant Sci 262:165–168. https://doi.org/10.1016/j.plantsci.2017.05.004

  • Subbarao GV, Searchinger TD (2021) A “more ammonium solution” to mitigate nitrogen pollution and boost crop yields. PNAS 18:e2107576118. https://doi.org/10.1073/pnas.2107576118

  • Subbarao GV, Kishii M, Bozal-Leorric A, Ortiz-Monasterio I, Gao X, Ibba MI, Karwat H, Gonzalez-Moro MB, Gonzalez-Murua C, Yoshihashi T, Tobita S, Kommerell V, Braun HJ, Iwanaga M (2021) Enlisting wild grass genes to combat nitrification in wheat farming: a nature-based solution. PNAS 118, No. 35:e2106595118. https://doi.org/10.1073/pnas.2106595118

  • Sun L, Lu YF, Yu FW, Kronzucker HJ, Shi WM (2016) Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. New Phytol 212:646–656. https://doi.org/10.1111/nph.14057

    Article  CAS  PubMed  Google Scholar 

  • Sylvester-Bradley R, Mosquera D, Méndez J (1988) Inhibition of nitrate accumulation in tropical grassland soils: effect of nitrogen fertilization and soil disturbance. J Soil Sci 39:407–416. https://doi.org/10.1111/j.1365-2389.1988.tb01226.x

  • Tanaka JP, Nardi P, Wissuwa M (2010) Nitrification inhibition activity, a novel trait in root exudates of rice. AoB PLANTS 2010, plq014. https://doi.org/10.1093/aobpla/plq014

  • Thion C, Prosser JI (2014) Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying–rewetting stress. FEMS Microbiol Ecol 90:380–389. https://doi.org/10.1111/1574-6941.12395

    Article  CAS  PubMed  Google Scholar 

  • Villegas D, Arevalo A, Nuñez J, Mazabel J, Subbarao G, Rao I, De Vega J, Arango J (2020) Biological nitrification inhibition (BNI): phenotyping of a core germplasm collection of the tropical forage grass Megathyrsus maximus under greenhouse conditions. Front Plant Sci 11:820. https://doi.org/10.3389/fpls.2020.00820

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner M, Loy A, Nogueira R, Purkhold U, Lee N, Daims H (2002) Microbial community composition and function in wastewater treatment plants. Anton Leeuw 81:665–680. https://doi.org/10.1023/A:1020586312170

    Article  CAS  Google Scholar 

  • Ward D (2005) Do we understand the causes of bush encroachment in African savannas? African J Range Forage Sci 22:101–105. https://doi.org/10.2989/1022011050948586

  • Webster CP, Shepherd MA, Goulding KWT, Lord E (1993) Comparisons of methods for measuring the leaching of mineral nitrogen from arable land. J Soil Sci 44:49–62. https://doi.org/10.1111/j.1365-2389.1993.tb00433.x

    Article  CAS  Google Scholar 

  • White F (1986) La végétation de l'Afrique : mémoire accompagnant la carte de végétation de l'Afrique UNESCO/AETFAT/UNSO. Paris : ORSTOM ; UNESCO, 385 p. (Recherches sur les Ressources Naturelles ; 20). ISBN 2–7099–0832–8

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827. https://doi.org/10.1038/nature02403

  • Wright CL, Schatteman A, Crombie AT, Murrell JC, Lehtovirta-Morley LE (2020) Inhibition of ammonia monooxygenase from ammonia-oxidizing archaea by linear and aromatic alkynes. Appl Environ Microbiol 86:1–14. https://doi.org/10.1128/AEM.02388-19

  • Yé L, Abbadie L, Bardoux G, Lata J-C, Nacro HB, Masse D, de Parseval H, Barot S (2015) Contrasting impacts of grass species on nitrogen cycling in a grazed Sudanian savanna. Acta Oecol 63:8–15. https://doi.org/10.1016/j.actao.2015.01.002

    Article  Google Scholar 

  • Yé L, Lata J-C, Masse D, Nacro HB, Kissou R, Diallo NH, Barot S (2017) Contrasted effects of annual and perennial grasses on soil chemical and biological characteristics of a grazed Sudanian savanna. Appl Soil Ecol 113:155–165. https://doi.org/10.1016/j.apsoil.2017.02.003

  • Yé L, Lata J-C, Nacro HB, Masse D, Barot S (2021) Effects of livestock on nitrogen and carbon cycling in a savanna in Burkina Faso. Acta Oecol 110:103694. https://doi.org/10.1016/j.actao.2020.103694

  • Zakir H, Subbarao GV, Pearse SJ, Gopalakrishnan S, Ito O, Ishikawa T, Kawano N, Nakahara K, Yoshihashi T, Ono H, Yoshida M (2008) Detection, isolation and characterization of a root-exuded compound responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytol 180:442–451. https://doi.org/10.1111/j.1469-8137.2008.02576.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Müller C, Cai Z (2015) Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils. Soil Biol Biochem 84:199–209. https://doi.org/10.1016/j.soilbio.2015.02.028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Discussions around this paper were made possible by the GainGrass Project (Global Assessment of Nitrification Inhibition by tropical Grasses Project, https://anr.fr/Project-ANR-19-CE02-0009) funded by the French National Research Agency (ANR). XLR also acknowledges funding from the European Joint Programme on Soil (EJP Soil). This manuscript is dedicated to the memory of Leonid Petrovich Rikhvanov (1945-2020), Professor of the Tomsk Polytechnic University, Russia, and of Jean Bretagne (1940-2021), Emeritus Research Director at CNRS and at the Laboratoire de Physique des Gaz et des Plasmas, Saclay University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Christophe Lata.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lata, JC., Le Roux, X., Koffi, K.F. et al. The causes of the selection of biological nitrification inhibition (BNI) in relation to ecosystem functioning and a research agenda to explore them. Biol Fertil Soils 58, 207–224 (2022). https://doi.org/10.1007/s00374-022-01630-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-022-01630-3

Keywords

Navigation