Skip to main content
Log in

How tree species with contrasting biological nitrification inhibition capacity influence denitrifier activity and abundance? Insights from reciprocal transfers of soil

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

We evaluated whether and how rapidly temperate forest tree species able to stimulate or inhibit nitrification (through biological nitrification inhibition, BNI) also influence denitrifier activity and abundance in soil and identified the main determinants of changes in denitrification. A reciprocal soil core transfer approach was implemented at a long-term experimental site between Douglas fir, a species assumed to stimulate nitrification, and stands of tree species with (spruce and Nordmann fir) or without (Corsican pine and beech) BNI capacity. Sixteen months after soil transfer, potential denitrification decreased in soils transferred from Douglas fir to another tree species and increased in soil cores transferred from any species to Douglas fir. The change in denitrification was not related to the BNI capacity of the tree species ‘receiving’ the soil cores. Structural equation modelling revealed that in soil cores transferred between Douglas fir and BNI species, changes in denitrification were mainly correlated to nitrifier abundances, i.e. AOA and Nitrobacter, nitrification rates, and soil NO3 availability, whereas in soil cores transferred between Douglas fir and non-BNI species denitrification changes were well correlated to C availability and the abundance of nirK-harbouring denitrifiers. Overall, our results indicate that denitrification rates can change strongly and quickly following soil transfers between tree stands. Particularly, when Douglas fir replaces BNI tree species, this quickly results in both increased nitrification and denitrification rates, thus exacerbating the ensuing risk of increased NO3 leaching and N2O emission from soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrianarisoa KS, Zeller B, Poly F, Siegenfuhr H, Bienaimé S, Ranger J, Dambrine E (2010) Control of nitrification by tree species in a common-garden experiment. Ecosystems 13:1171–1187. https://doi.org/10.1007/s10021-010-9390-x

    Article  CAS  Google Scholar 

  • Assémien FL, Cantarel AAM, Florio A, Lerondelle C, Pommier T, Gonnety JT, Le Roux X (2019) Different groups of nitrite-reducers and N2O-reducers have distinct ecological niches and functional roles in West African cultivated soils. Soil Biol Biochem 129:39–47. https://doi.org/10.1016/j.soilbio.2018.11.003

    Article  CAS  Google Scholar 

  • Attard E, Recous S, Chabbi A, De Berranger C, Guillaumaud N, Labreuche J, Philippot L, Schmid B, Le Roux X (2011) Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses. Glob Chang Biol 17:1975–1989. https://doi.org/10.1111/j.1365-2486.2010.02340.x

    Article  Google Scholar 

  • Bakken LR, Olsen RA (1987) The relationship between cell size and viability of soil bacteria. Microb Ecol 13:103–114

    Article  CAS  PubMed  Google Scholar 

  • Bardon C, Misery B, Piola F, Poly F, Le Roux X (2018) Control of soil N cycle processes by Pteridium aquilinum and Erica cinerea in heathlands along a pH gradient. Ecosphere 9:e02426. https://doi.org/10.1002/ecs2.2426

    Article  Google Scholar 

  • Bottomley PJ, Taylor AE, Boyle SA, McMahon SK, Rich JJ, Cromack K, Myrold DD (2004) Responses of nitrification and ammonia-oxidizing bacteria to reciprocal transfers of soil between adjacent coniferous forest and meadow vegetation in the cascade mountains of oregon. Microb Ecol 48:500–508. https://doi.org/10.1007/s00248-004-0215-3

    Article  CAS  PubMed  Google Scholar 

  • Boyle SA, Rich JJ, Bottomley PJ, Cromack K Jr, Myrold D (2006) Reciprocal transfer effects on denitrifying community composition and activity at forest and meadow sites in the Cascade Mountains of Oregon. Soil Biol Biochem 38:870–878. https://doi.org/10.1016/j.soilbio.2005.08.003

    Article  CAS  Google Scholar 

  • Bragazza L, Iacumin P, Siffi C, Gerdol R (2010) Seasonal variation in nitrogen isotopic composition of bog plant litter during 3 years of field decomposition. Biol Fertil Soils 46:877–881

    Article  CAS  Google Scholar 

  • Chen J, Stark JM (2000) Plant species effects and carbon and nitrogen cycling in a sagebrush±crested wheatgrass soil. Soil Biol Biochem 32:47–57

    Article  CAS  Google Scholar 

  • Cornelis J-T, Titeux H, Ranger J, Delvaux B (2011) Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species. Plant Soil 342:369–378. https://doi.org/10.1007/s11104-010-0702-x

    Article  CAS  Google Scholar 

  • Coskun D, Britto DT, Shi W, Kronzucker HJ (2017) How plant root exudates shape the nitrogen cycle. Trends Plant Sci 22:661–673. https://doi.org/10.1016/j.tplants.2017.05.004

    Article  CAS  PubMed  Google Scholar 

  • De Schrijver A, De Frenne P, Staelens J, Verstraeten G, Muys B, Vesterdal L, Wuyts K, van Nevel L, Schelfhout S, de Neve S, Verheyen K (2012) Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development. Glob Chang Biol 18:1127–1140. https://doi.org/10.1111/j.1365-2486.2011.02572.x

    Article  Google Scholar 

  • Díaz-Pinés E, Rubio A, Van Miegroet H, Montes F, Benito M (2011) Does tree species composition control soil organic carbon pools in Mediterranean mountain forests? For Ecol Manage 262:1895–1904. https://doi.org/10.1016/j.foreco.2011.02.004

    Article  Google Scholar 

  • Endlweber K, Scheu S (2007) Interactions between mycorrhizal fungi and Collembola: effects on root structure of competing plant species. Biol Fertil Soils 43:741–749

    Article  Google Scholar 

  • Finzi AC, Van Breemen N, Canham CD (1998) Canopy tree-soil interactions within temperate forests: species effects on soil carbon and nitrogen. Ecol Appl 8:440–446

    Google Scholar 

  • Florio A, Clark IM, Hirsch PR, Jhurreea D, Benedetti A (2014) Effects of the nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) on abundance and activity of ammonia oxidizers in soil. Biol Fertil Soils 50:795–807

    Article  CAS  Google Scholar 

  • Florio A, Maienza A, Dell’Abate MT, Benedetti A (2016) Changes in the activity and abundance of the soil microbial community in response to the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP). J Soils Sed 16:2687–2697. https://doi.org/10.1007/s11368-016-1471-9

    Article  CAS  Google Scholar 

  • Florio A, Pommier T, Gervaix J, Bérard A, Le Roux X (2017) Soil C and N statuses determine the effect of maize inoculation by plant growth-promoting rhizobacteria on nitrifying and denitrifying communities. Sci Rep 7:8411. https://doi.org/10.1038/s41598-017-08589-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Florio A, Bréfort C, Gervaix J, Bérard A, Le Roux X (2019) The responses of NO2−- and N2O-reducing bacteria to maize inoculation by the PGPR Azospirillum lipoferum CRT1 depend on carbon availability and determine soil gross and net N2O production. Soil Biol Biochem 136:107524. https://doi.org/10.1016/J.SOILBIO.2019.107524

    Article  CAS  Google Scholar 

  • Florio A, Marechal M, Legout A, Creuze des Chatelliers C, Gervaix J, Didier S, Zeller B, Le Roux X (2021) Influence of biological nitrification inhibition by forest tree species on soil denitrifiers and N2O emissions. Soil Biol Biochem 155:108164. https://doi.org/10.1016/j.soilbio.2021.108164

    Article  CAS  Google Scholar 

  • Griffiths RP, Homann PS, Riley R (1998) Denitrification enzyme activity of Douglas fir and Red Alder forest Soils of the pacific northwest. Soil Biol Biochem 30:1147–1157

    Article  CAS  Google Scholar 

  • Groth Petersen D, Blazewicz SJ, Firestone M, Herman DJ, Turetsky M, Waldrop M (2012) Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ Microbiol 14:993–1008. https://doi.org/10.1111/j.1462-2920.2011.02679.x

    Article  CAS  Google Scholar 

  • Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72:5181–5189. https://doi.org/10.1128/AEM.00231-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann RK, Lavender DP (1999) Douglas-fir planted forests. New for 17:53–70

    Article  Google Scholar 

  • Jussy J-H, Ranger J, Bienaimé S, Dambrine E (2004) Effects of a clear-cut on the in situ nitrogen mineralisation and the nitrogen cycle in a 67-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantation. Ann for Sci 61:397–408. https://doi.org/10.1051/forest:2004033

    Article  Google Scholar 

  • Kandeler E, Deiglmayr K, Tscherko D, Bru D, Philippot L (2006) Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl Environ Microbiol 72:5957–5962. https://doi.org/10.1128/AEM.00439-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JG, Park SJ, Damsté JSS, Schouten S, Rijpstra WIC, Jung MY, Kim SJ, Gwak JH, Hong H, Si OJ, Lee SH, Madsen EL, Rhee SK (2016) Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. Proc Natl Acad Sci 113:7888–7893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laffite A, Florio A, Andrianarisoa KS, Creuze des Chatelliers C, Schloter-Hai B, Ndaw SM, Periot C, Schloter M, Zeller B, Poly F, Le Roux X (2020) Biological inhibition of soil nitrification by forest tree species affects Nitrobacter populations. Environ Microbiol 22:1141–1153. https://doi.org/10.1111/1462-2920.14905

    Article  CAS  PubMed  Google Scholar 

  • Lama S, Kuhn T, Lehmann MF, Müller C, Gonzalez O, Eisenhauer N, Lange M, Scheu S, Oelmann Y, Wilcke W (2020) The biodiversity-N cycle relationship: a 15 N tracer experiment with soil from plant mixtures of varying diversity to model N pool sizes and transformation rates. Biol Fertil Soils 56:1047–1061

    Article  CAS  Google Scholar 

  • Laverman AM, Zoomer HR, Van Verseveld HW, Verhoef HA (2000) Temporal and spatial variation of nitrogen transformations in a coniferous forest soil. Soil Biol Biochem 32:1661–1670

    Article  CAS  Google Scholar 

  • Le Roux X, Bardy M, Loiseau P, Louault F (2003) Stimulation of soil nitrification and denitrification by grazing in grasslands: do changes in plant species composition matter? Oecologia 137:417–425

    Article  PubMed  Google Scholar 

  • Le Roux X, Poly F, Currey P, Commeaux X, Hai B, Nicol GW, Prosser JI, Schloter M, Attard E, Klumpp K (2008) Effects of aboveground grazing on coupling among nitrifier activity, abundance and community structure. ISME J 2:221–232. https://doi.org/10.1038/ismej.2007.109

    Article  CAS  PubMed  Google Scholar 

  • Le Roux X, Schmid B, Poly F, Barndard RL, Niklaus PA, Guillaumaud N, Habekost M, Oelmann Y, Philippot L, Salles JF, Schloter M, Steinbeiss S, Weigelt A (2013) Soil environmental conditions and microbial build-up mediate the effect of plant diversity on soil nitrifying and denitrifying enzyme activities in temperate grasslands. PLoS ONE 8:e61069. https://doi.org/10.1371/journal.pone.0061069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legout A, van der Heijden G, Jaffrain J, Jaffrain J, Boudot JP, Ranger J (2016) Tree species effects on solution chemistry and major element fluxes: a case study in the Morvan (Breuil, France). For Ecol Manage 378:244–258. https://doi.org/10.1016/j.foreco.2016.07.003

    Article  Google Scholar 

  • Li Y, Zhang Y, Chapman SJ, Yao H (2021) Biological nitrification inhibition by sorghum root exudates impacts ammonia-oxidizing bacteria but not ammonia-oxidizing archaea. Biol Fertil Soils 57:399–407

    Article  CAS  Google Scholar 

  • Lovett GM, Weathers KC, Arthur MA, Schultz JC (2004) Nitrogen cycling in a northern hardwood forest: do species matter? Biogeochemistry 67:289–308

    Article  CAS  Google Scholar 

  • Malchair S, Carnol M (2009) Microbial biomass and C and N transformations in forest floors under European beech, sessile oak, Norway spruce and Douglas-fir at four temperate forest sites. Soil Biol Biochem 41:831–839. https://doi.org/10.1016/j.soilbio.2009.02.004

    Article  CAS  Google Scholar 

  • Mareschal L, Turpault M-P, Bonnaud P, Ranger J (2013) Relationship between the weathering of clay minerals and the nitrification rate: a rapid tree species effect. Biogeochemistry 112:293–309. https://doi.org/10.1007/s10533-012-9725-0

    Article  CAS  Google Scholar 

  • Miller MN, Zebarth BJ, Dandie CE, Burton DL, Goyer C, Trevors JT (2008) Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil. Soil Biol Biochem 40:2553–2562. https://doi.org/10.1016/j.soilbio.2008.06.024

    Article  CAS  Google Scholar 

  • Mohn J, Schrumann A, Hagedorn F, Schleppi P, Bachofen R (2000) Increased rates of denitrification in nitrogen-treated forest soils. For Ecol Manage 137:113–119

    Article  Google Scholar 

  • Moukoumi J, Munier-Lamy C, Berthelin J, Ranger J (2006) Effect of tree species substitution on organic matter biodegradability and mineral nutrient availability in a temperate topsoil. Ann for Sci 63:763–771. https://doi.org/10.1051/forest:2006057

    Article  CAS  Google Scholar 

  • Myrold DD, Tiedje JM (1985) Establishment of denitrification capacity in soil: effects of carbon, nitrate and moisture. Soil Biol Biochem 17:819–822

    Article  CAS  Google Scholar 

  • Nardi P, Laanbroek HJ, Nicol GW, Renella G, Cardinale M, Pietramellara G, Weckwerth W, Trinchera A, Ghatak A, Nannipieri P (2020) Biological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applications. FEMS Microbiol Rev 44:874–908. https://doi.org/10.1093/femsre/fuaa037

    Article  CAS  PubMed  Google Scholar 

  • Niklaus PA, Le Roux X, Poly F, Buchmann N, Schrerer-Lorenzen M, Weigelt A, Barnard RL (2016) Plant species diversity affects soil-atmosphere fluxes of methane and nitrous oxide. Oecologia 1:919–930. https://doi.org/10.1007/s00442-016-3611-8

    Article  Google Scholar 

  • Northup RR, Zengshou Y, Dahlgren RA, Vogt KA (1995) Polyphenol control of nitrogen release from pine litter. Nature 377:227–229

    Article  CAS  Google Scholar 

  • Nugroho RA, Röling WFM, Laverman AM, Verhoef HA (2005) Net nitrification rate and presence of Nitrosospira cluster 2 in acid coniferous forest soils appear to be tree species specific. Soil Biol Biochem 38:1166–1171. https://doi.org/10.1016/j.soilbio.2005.09.011

    Article  CAS  Google Scholar 

  • Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, von Bergen M, Lagkouvardos I, Karst SM, Galushko A, Koch H, Berry D, Daimes H, Wagner M (2015) Cyanate as an energy source for nitrifiers. Nature 524:105–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra AK, Abbadie L, Clays-Josserand A, Degrange V, Grayston SJ, Guillaumaud N, Loiseau P, Louault F, Mahmood S, Nazaret S, Philippot L, Poly F, Prosser JI, Le Roux X (2006) Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils. Environ Microbiol 8:1005–1016. https://doi.org/10.1111/j.1462-2920.2006.00992.x

    Article  CAS  PubMed  Google Scholar 

  • Priha O, Smolander A (1999) Nitrogen transformations in soil under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Soil Biol Biochem 31:965–977

    Article  CAS  Google Scholar 

  • Ranger J, Allie Â, Gelhaye D, Pollier B, Turpault MP, Granier A (2002) Nutrient budgets for a rotation of a Douglas-®r plantation in the Beaujolais (France) based on a chronosequence study. For Ecol Manage 171:3–16

    Article  Google Scholar 

  • Reed HE, Martiny JBH (2007) Testing the functional significance of microbial composition in natural communities. FEMS Microbiol Ecol 62:161–170. https://doi.org/10.1111/j.1574-6941.2007.00386.x

    Article  CAS  PubMed  Google Scholar 

  • Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:1–12

    Article  Google Scholar 

  • Sarr PS, Ando Y, Nakamura S, Deshpande S, Subbarao GV (2020) Sorgoleone release from sorghum roots shapes the composition of nitrifying populations, total bacteria, and archaea and determines the level of nitrification. Biol Fertil Soils 56:145–166

    Article  Google Scholar 

  • Shipley B (2016) Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inference. In: A user’s guide to path analysis, structural equations and causal inference

  • Srikanthasamy T, Leloup J, N’dri AB, Barot S, Gervaix J, Koné AW, Koffi KF, Le Roux X, Raynaud X, Lata JC (2018) Contrasting effects of grasses and trees on microbial N-cycling in an African humid savanna. Soil Biol Biochem 117:153–163. https://doi.org/10.1016/j.soilbio.2017.11.016

    Article  CAS  Google Scholar 

  • Subbarao GV, Nakahara K, Hurtado MP, Ono H, Moreta DE, Salcedo AF, Yoshihashi AT, Ishikawa T, Ishitani N, Ohnishi-Kameyama M, Yoshida M, Rondon M, Rao IM, Lascano CE, Berry WL, Ito O (2009) Evidence for biological nitrification inhibition in Brachiaria pastures. Proc Natl Acad Sci 106:17302–17307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subbarao GV, Yoshihashi T, Worthington M, Nakahara K, Ando Y, Sahrawat KL, Rao IM, Lata JC, Kishii M, Braun HJ (2015) Suppression of soil nitrification by plants. Plant Sci 233:155–164. https://doi.org/10.1016/j.plantsci.2015.01.012

    Article  CAS  PubMed  Google Scholar 

  • Throbäck IN, Enwall K, Jarvis Å, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417. https://doi.org/10.1016/j.femsec.2004.04.011

    Article  PubMed  Google Scholar 

  • Trum F, Titeux H, Ranger J, Delvaux B (2011) Influence of tree species on carbon and nitrogen transformation patterns in forest floor profiles. Ann for Sci 68:837–847. https://doi.org/10.1007/s13595-011-0080-4

    Article  Google Scholar 

  • USDA (1999) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, 2nd edn. U.S. Gov. Print. Office, Washing- ton (DC)

    Google Scholar 

  • USDA (2000) Wood handbook: wood as an engineering material. University Press of the Pacific, Madison, p 463

    Google Scholar 

  • van Kessel C, Pennock DJ, Farrell RE (1993) Seasonal variations in denitrification and nitrous oxide evolution at the landscape scale. Soil Sci Soc Am J 57:988–995. https://doi.org/10.2136/sssaj1993.03615995005700040018x

    Article  Google Scholar 

  • Vermes JF, Myrold DD (1992) Denitrification in forest soils of Oregon. Can J for Res 22:504–512. https://doi.org/10.1139/x92-066

    Article  CAS  Google Scholar 

  • Vesterdal L, Schmidt IK, Callesen I, Nilsson LO (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For Ecol Manage 255:35–48. https://doi.org/10.1016/j.foreco.2007.08.015

    Article  Google Scholar 

  • Vestergaard G, Schulz S, Schöler A, Schloter M (2017) Making big data smart—how to use metagenomics to understand soil quality. Biol Fertil Soils 53:479–484

    Article  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Wallenstein MD, Allison SD, Ernakovich J, Steinweg JM, Sinsabaugh R (2011) Controls on the temperature sensitivity of soil enzymes: a key driver of in situ enzyme activity rates. In: Soil enzymology, pp 245–258. Springer, Berlin, Heidelberg

  • Wertz S, Dandie CE, Goyer C, Trevors J, Patten C (2009) Diversity of nirK denitrifying genes and transcripts in an agricultural soil. Appl Environ Microbiol 75:7365–7377. https://doi.org/10.1128/AEM.01588-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006) Comparison of structure and life span in roots and leaves among temperate trees. Ecol Monogr 76:381–397

    Article  Google Scholar 

  • Zeller B, Recous S, Kunze M, Moukoumi J, Colin-Belgrand M, Bienaimé S, Ranger J, Dambine E (2007) Influence of tree species on gross and net N transformations in forest soils. Ann for Sci 64:151–158. https://doi.org/10.1051/forest:2006099

    Article  CAS  Google Scholar 

  • Zeller B, Legout A, Bienaimé S, Gratia B, Santenoise P, Bonnaud P, Ranger J (2019) Douglas fir stimulates nitrification in French forest soils. Sci Rep 9:10687. https://doi.org/10.1038/s41598-019-47042-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhalnina K, Dörr de Quadros P, Camargo FAO, Triplett EW (2012) Drivers of archaeal ammonia-oxidizing communities in soil. Front Microbiol 3:1–9. https://doi.org/10.3389/fmicb.2012.00210

    Article  CAS  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification †. Microbiol Mol Biol Rev 61:533–616

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the French National Research Institute for Agriculture, Food and Environment, INRAE (ECODIV Department), and by the EC2CO program (funded project 12961). The UR BEF is supported by the French National Research Agency through the Cluster of Excellence ARBRE (ANR-11-LABX-0002–01) and ANAEE-France, which is an infrastructure from the French Investment for the Future (Investissements d’Avenir) program, overseen by the French National Research Agency (ANR-11-INBS-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Florio.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 467 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Florio, A., Bréfort, C., Creuze des Chatelliers, C. et al. How tree species with contrasting biological nitrification inhibition capacity influence denitrifier activity and abundance? Insights from reciprocal transfers of soil. Biol Fertil Soils 57, 1089–1101 (2021). https://doi.org/10.1007/s00374-021-01600-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-021-01600-1

Keywords

Navigation