Skip to main content
Log in

Distinct effect of nitrogen fertilisation and soil depth on nitrous oxide emissions and nitrifiers and denitrifiers abundance

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The nitrous oxide and molecular N emissions from 5-cm length subsamples taken from 20-cm length sample corers containing eutric Cambisol soil fertilised either with urea, ammonium or nitrate for 1 year have been examined using gas chromatography. At the beginning of the incubation, the same N rate (260 kg N/ha) was added to the soil and kept constant during the experiment. The total abundance of the soil Bacteria and Archaea and that of nitrifiers and denitrifiers was estimated by quantitative PCR of the corresponding biotic variables 16S rRNA, amoA and napA, narG, nirK, nirS, norB, nosZI and nosZII genes. The abiotic variables dissolved oxygen, pH, exchangeable NH4+-N and NO3-N contents and total C and total N were also analysed. None of the three fertilisers affected the total abundance of Bacteria and Archaea and nitrification was the main driver of nitrous oxide production in the 0- to 5-cm and 5- to 10-cm soil layers while denitrification was in the 10- to 15-cm and 15- to 20-cm soil horizons. Parallel to the reduction in the content of dissolved oxygen along the soil profile, there was a decrease in the total and relative abundance of the bacterial and archaeal amoA gene and an increase in the abundances of the denitrification genes, mainly in the 10- to 15-cm and 15- to 20-cm soil layers. A non-metric multidimensional scaling plot comparing the biotic and abiotic variables examined in each of the four 5-cm soil subsamples and the whole 20-cm sample showed a disparate effect of N fertilisation on N gas emissions and abundance of nitrifiers and denitrifiers bacterial and archaeal communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnaldos M, Kunkel SA, Stark BC, Pagilla KR (2013) Enhanced heme protein expression by ammonia-oxidizing communities acclimated to low dissolved oxygen conditions. Appl Microbiol Biotechnol 97:10211–10221

    Article  PubMed  CAS  Google Scholar 

  • Baggs ME, Philippot L (2011) Nitrous oxide production in the terrestrial environment. In: Moir JWB (Ed) Nitrogen cycling in bacteria: molecular analysis. Caister Academic Press, Norfolk, pp 211–232

    Google Scholar 

  • Barrena I, Menéndez S, Correa-Galeote D, Vega-Masa I, Bedmar EJ, González-Murua C, Estavillo JM (2017) Soil water content modulates the effect of the nitrification inhibitor 3,4- dimethylpyrazole phosphate (DMPP) on nitrifying and denitrifying bacteria. Geoderma 303:1–8

    Article  CAS  Google Scholar 

  • Barrett M, Khalil MI, Jahangir MM, Lee C, Cárdenas LM, Collins G, Richards KG, O’Flaherty V (2016) Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils. Environ Sci Pollut Res 23:7899–7910

    Article  CAS  Google Scholar 

  • Bateman EJ, Baggs EM (2005) Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertil Soils 41:379–388

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Phil Trans R Soc A 368:91–97

    Google Scholar 

  • Casey RE, Taylor MD, Klaine SJ (2001) Mechanisms of nutrient attenuation in a subsurface flow riparian wetland. J Environ Qual 30:1732–1737

    Article  PubMed  CAS  Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Plymouth

    Google Scholar 

  • Clement JC, Pinay G, Marmonier P (2002) Seasonal dynamics of denitrification along topohydrosequences in three different riparian wetland. J Environ Qual 31:1025–1037

    Article  PubMed  CAS  Google Scholar 

  • Correa-Galeote D, Tortosa G, Bedmar EJ (2014) Quantification of functional microbial nitrogen cycle genes in environmental samples. In: Marco DE (ed) Metagenomics of the microbial nitrogen cycle: theory, methods and applications. Caister Academic Press, Norwich, pp 65–85

    Google Scholar 

  • Cosandey AC, Maitre V, Guenat C (2003) Temporal denitrification patterns in different horizons of two riparian soils. Eur J Soil Sci 54:25–37

    Article  CAS  Google Scholar 

  • Danielson RE, Sutherland PL (1986) Porosity. In: Klute A (ed) Methods of soil analysis part 1. Physical and mineralogical methods, agronomy monograph no. 9. Soil Science Society of America, Madison, pp 443–461

    Google Scholar 

  • Davidson EA (1991) Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Roger IE, Whitman WG (eds) Microbial production and consumption of green-house gases: methane, nitrogen oxides, and halomethanes. American Society for Microbiology, Madison, pp 219–235

    Google Scholar 

  • De Rosa D, Rowlings DW, Biala J, Scheer C, Basso B, McGree J, Grace PR (2016) Effect of organic and mineral N fertilizers on N2O emissions from an intensive vegetable rotation. Biol Fertil Soils 52:895–908

    Article  CAS  Google Scholar 

  • Dhondt K, Boeckx P, Hofman G, Van Cleemput O (2004) Temporal and spatial patterns of denitrification enzyme activity and nitrous oxide fluxes in three adjacent vegetated riparian buffer zones. Biol Fertil Soils 40:243–251

    Article  CAS  Google Scholar 

  • Dixon ER, Laughlin RJ, Watson CJ, Hatch DJ (2010) Evidence for the production of NO and N2O in two contrasting subsoils following the addition of synthetic cattle urine. Rapid Commun Mass Spectrom 24:519–528

    Article  PubMed  CAS  Google Scholar 

  • Erisman JW, Galloway JN, Dice NB, Sutton MA, Bleeker A, Grizzetti B, Leach AM, de Vries W (2015) Nitrogen: too much of a vital resource. Science Brief. WWF Netherlands, Zeist

    Google Scholar 

  • FAO (2017) Soil organic carbon: the hidden potential. Food and Agriculture Organization of the United Nations, Rome, Italy. http://www.fao.org/3/a-i6937e.pdf. Accessed 13 March 2018

  • Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. The ISME J 6:1007–1017

    Article  PubMed  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions and potential solutions. Science 320:889–892

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Schreiber F, Collins G, Jensen MM, Kostka JE, Lavik G, de Beer D, Zhou H, Kuypers MMM (2009) Aerobic denitrification in permeable Wadden Sea sediments. The ISME J 4:417–426

    Article  PubMed  CAS  Google Scholar 

  • Geets J, Boon N, Verstraete W (2006) Strategies of aerobic ammonia-oxidizing bacteria for coping with nutrient and oxygen fluctuations. FEMS Microbiol Ecol 58:1–13

    Article  PubMed  CAS  Google Scholar 

  • González-Martínez A, Rodríguez-Sánchez A, García-Ruiz MJ, Muñoz-Palazón B, Cortes-Lorenzo C, Osorio F, Vahala R (2016) Performance and bacterial community dynamics of a CANON bioreactor acclimated from high to low operational temperatures. Chem Eng J 287:557–567

    Article  CAS  Google Scholar 

  • Groffman PM, Altabet MA, Böhlke JK, Butterbach-Bahl K, David MB, Firestone MK, Giblin AE, Kana TM, Nielsen LP, Voytek MA (2006) Methods for measuring denitrification: diverse approaches to a difficult problem. Ecol Appl 16:2091–2122

    Article  PubMed  Google Scholar 

  • Hallin S, Philippot L, Löffler FE, Sanford RA, Jones CM (2017) Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol 26:43–55

    Article  PubMed  CAS  Google Scholar 

  • Herold MB, Baggs EM, Daniell TJ (2012) Fungal and bacterial denitrification are differently affected by long-term pH amendment and cultivation of arable soil. Soil Biol Biochem 54:25–35

    Article  CAS  Google Scholar 

  • Hill AR, Vidon PGF, Langat J (2004) Denitrification potential in relation to five headwater riparian zones. J Environ Qual 33:911–919

    Article  PubMed  CAS  Google Scholar 

  • Hofmann F, Feil R, Kleppisch T, Schlossmann J (2006) Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev 86:1–23

    Article  PubMed  CAS  Google Scholar 

  • Jahangir MMR, Khalil MI, Johnston P, Cárdenas L, Hatch D, Butler M, Barrett M, O’flahertye V, Richards KG (2012) Total denitrification potential in subsoils: a mechanism to reduce nitrate leaching to groundwater. Agric Ecosyst Environ 147:13–23

    Article  CAS  Google Scholar 

  • Ji B, Yang K, Zhu L, Jiang Y, Wang H, Zhou J, Zhang H (2015) Aerobic denitrification: a review of important advances of the last 30 years. Biotechnol Bioprocess Eng 20:643–651

    Article  CAS  Google Scholar 

  • Kearns PJ, Angell JH III, Feinman SG, Bowen JL (2015) Long-term nutrient addition differentially alters community composition and diversity of genes that control nitrous oxide flux from salt marsh sediments. Estuar Coast Shelf Sci 154:39–47

    Article  CAS  Google Scholar 

  • Khalil MI, Richards KG (2011) Denitrification enzyme activity and potential of subsoils under grazed grasslands assayed by membrane inlet mass spectrometer. Soil Biol Biochem 43:1787–1797

    Article  CAS  Google Scholar 

  • Klappenbach JA, Saxman PR, Cole JR, Schmidt TM (2001) rrndb: the ribosomal RNA operon copy number database. Nucleic Acid Res 29:181–184

    Article  PubMed  CAS  Google Scholar 

  • Kustermann B, Christen O, Hulsgergen K (2010) Modelling nitrogen cycles of farming systems as basis of site- and farm-specific nitrogen management. Agric Ecosyst Environ 135:70–80

    Article  CAS  Google Scholar 

  • Liu R, Hayden HL, Suter H, Hu H, Lam SK, He J, Mele PM, Chen D (2017) The effect of temperature and moisture on the source of N2O and contributions from ammonia oxidizers in an agricultural soil. Biol Fertil Soils 53:141–152

    Article  CAS  Google Scholar 

  • Loick N, Dixon ER, Abalos D, Vallejo A, Matthews GP, McGeough KL (2016) Denitrification as a source of nitric oxide emissions from incubated soil cores from a UK grassland soil. Soil Biol Biochem 95:1–7

    Article  CAS  Google Scholar 

  • Pan H, Ying S, Liu H, Zeng L, Zhang Q, Liu Y, Xu J, Li Y, Di Y (2018) Microbial pathways for nitrous oxide emissions from sheep urine and dung in a typical steppe grassland. Biol Fertil Soils 54:717–730

    Article  CAS  Google Scholar 

  • Philips S, Wyffels S, Sprengers R, Verstraete W (2002) Oxygen-limited autotrophic nitrification/denitrification by ammonia oxidisers enables upward motion towards more favourable conditions. Appl Microbiol Biotechnol 59:557–566

    Article  PubMed  CAS  Google Scholar 

  • Qin S, Ding K, Clough TJ, Hu C, Luo J (2017) Temporal in situ dynamics of N2O reductase activity as affected by nitrogen fertilization and implications for the N2O/(N2O + N2) product ratio and N2O mitigation. Biol Fertil Soils 53:723–727

    Article  CAS  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    Article  PubMed  CAS  Google Scholar 

  • Shoun H, Fushinobu S (2017) Denitrification in fungi. In: Moura I, Moura JJG, Pauleta SR, Maia LB (eds) Metalloenzymes in denitrification: applications and environmental impacts. Royal Society of Chemistry, London, pp 331–348

    Google Scholar 

  • Syakila A, Kroeze C (2011) The global nitrous oxide budget revisited. Greenhouse Gas Meas Manage 1:17–26

    Article  CAS  Google Scholar 

  • Takaya N, Catalan-Sakairi MAB, Sakaguchi Y, Kato I, Zhou Z, Shoun H (2003) Aerobic denitrifying bacteria that produce low levels of nitrous oxide. Appl Environ Microbiol 69:3152–3157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tortosa G, Correa D, Sánchez-Raya AJ, Delgado A, Sánchez-Monedero MA, Bedmar EJ (2011) Effects of nitrate contamination and seasonal variation on the denitrification and greenhouse gas production in La Rocina Stream (Doñana National Park, SW Spain). Ecol Eng 37:539–548

    Article  Google Scholar 

  • Tortosa G, Hidalgo A, Salas A, Bedmar EJ, Mesa S, Delgado MJ (2015) Nitrate and flooding induce N2O emissions from soybean nodule. Symbiosis 67:125–133

    Article  CAS  Google Scholar 

  • Wang Q, Liu YR, Zhang CJ, Zhang LM, Han LL, Shen JP, He JZ (2017) Responses of soil nitrous oxide production and abundances and composition of associated microbial communities to nitrogen and water amendment. Biol Fertil Soils 53:601–611

    Article  CAS  Google Scholar 

  • Wertz S, Goyer C, Zebarth BJ, Tatti E, Burton DL, Chantigny MH, Filion M (2016) The amplitude of soil freeze-thaw cycles influences temporal dynamics of N2O emissions and denitrifier transcriptional activity and community composition. Biol Fertil Soils 52:1149–1162

    Article  CAS  Google Scholar 

  • Wessén E, Söderström M, Stenberg M, Bru D, Hellman M, Welsh A, Thomsen F, Klemedtson L, Philippot L, Hallin S (2011) Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning. The ISME J 5:1213–1225

    Article  PubMed  CAS  Google Scholar 

  • Wos-Oxley ML, Plumeier I, von Eiff C, Taudien S, Platzer M, Vilchez-Vargas R, Becker K, Pieper DH (2010) A poke into the diversity and associations within human anterior nare microbial communities. The ISME J 4:839–851

    Article  PubMed  Google Scholar 

  • Wrage N, Velthof GL, van Beusichem ML, Oenema O (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732

    Article  CAS  Google Scholar 

  • Yan G, Zing Y, Xu L, Wang J, Dong X, Shan W, Guo L, Wang Q (2017) Effects of different nitrogen additions on soil microbial communities in different seasons in a boreal forest. Ecosphere 8:e01879

    Article  Google Scholar 

  • Zhu X, Burger M, Doane TA, Horwath WR (2013) Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proc Natl Acad Sci 110:6328–6333

    Article  PubMed  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was supported by the ERDF-cofinanced grant PEAGR2012-1968 from Consejería de Economía, Innovación y Ciencia (Junta de Andalucía, Spain) and the MINECO-CSIC Agreement RECUPERA 2020. ACH is recipient of a grant of MECD (FPU 2014/01633).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Castellano-Hinojosa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castellano-Hinojosa, A., González-López, J. & Bedmar, E.J. Distinct effect of nitrogen fertilisation and soil depth on nitrous oxide emissions and nitrifiers and denitrifiers abundance. Biol Fertil Soils 54, 829–840 (2018). https://doi.org/10.1007/s00374-018-1310-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-018-1310-9

Keywords

Navigation