Skip to main content
Log in

Stable isotope probing of active methane oxidizers in rice field soils from cold regions

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

DNA-based stable isotope probing (DNA-SIP) was employed to establish direct link between methane oxidation activity and the taxonomic identity of active methanotrophs in three rice field soils from Jian-San-Jiang (one baijiang origin soil, JB and one meadow origin soil, JM) and Qing-An (meadow origin soil, QA) districts in Northeastern China. Following microcosm incubation under 1% v/v13CH4 condition, soil organic 13C atom percent significantly increased from background 1.08 to 1.21% in average, indicating the biomass synthesis supported by methanotrophy. Real-time PCR analysis of methanotroph-specific biomarker pmoA genes of the buoyant density for DNA gradient, following the ultracentrifugation of the total DNA extracted from SIP microcosms, indicated an enrichment of methanotroph genomes in 13C-labeled DNA. It suggested propagation of microbial methane oxidizers in soils. High-throughput sequencing of 16S rRNA and pmoA genes from 13C-labeled DNA further revealed a diverse guild of both type I and II methanotrophs in all three soils. Specifically, Methylobacter-affiliated type I methanotrophs dominated the methanotrophic activity in JB and JM soils, whereas Methylocystis-affiliated type II methanotrophs dominated QA soil. This implied the physiological diversification of soil methanotrophs that might be due to constant environmental fluctuations in paddies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Bodelier PLE, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47:265–277

    Article  CAS  PubMed  Google Scholar 

  • Bodelier P, Roslev P, Henckel T, Frenzel P (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403:421–424

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Zheng Y, Bodelier PL, Conrad R, Jia Z (2016) Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Commun 7:11728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Dumont MG, McNamara NP, Chamberlain PM, Bodrossy L, Stralis-Pavese N, Murrell JC (2008a) Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. Environ Microbiol 10:446–459

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Dumont MG, Neufeld JD, Bodrossy L, Stralis-Pavese N, McNamara NP, Ostle N, Briones MJ, Murrell JC (2008b) Revealing the uncultivated majority: combining DNA stable-isotope probing, multiple displacement amplification and metagenomic analyses of uncultivated Methylocystis in acidic peatlands. Environ Microbiol 10:2609–2622

    Article  CAS  PubMed  Google Scholar 

  • Conrad R, Rothfuss F (1991) Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biol Fertil Soils 12:28–32

    Article  CAS  Google Scholar 

  • Dedysh SN (2009) Exploring methanotroph diversity in acidic northern wetlands: molecular and cultivation-based studies. Microbiology 78:655–669

    Article  CAS  Google Scholar 

  • Eller G, Frenzel P (2001) Changes in activity and community structure of methane-oxidizing bacteria over the growth period of rice. Appl Environ Microbiol 67:2395–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esson KC, Lin X, Kumaresan D, Chanton JP, Murrell JC, Kostka JE (2016) Alpha- and gammaproteobacterial methanotrophs codominate the active methane-oxidizing communities in an acidic boreal peat bog. Appl Environ Microbiol 82:2363–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frenzel P, Rothfuss F, Conrad R (1992) Oxygen profiles and methane turnover in a flooded rice microcosm. Biol Fertil Soils 14:84–89

    Article  CAS  Google Scholar 

  • Graef C, Hestnes AG, Svenning MM, Frenzel P (2011) The active methanotrophic community in a wetland from the high Arctic. Environ Microbiol Rep 3:466–472

    Article  CAS  PubMed  Google Scholar 

  • Gupta V, Smemo KA, Yavitt JB, Basiliko N (2012) Active methanotrophs in two contrasting north American peatland ecosystems revealed using DNA-SIP. Microb Ecol 63:438–445

    Article  CAS  PubMed  Google Scholar 

  • Hahn J, Juottonen H, Fritze H, Tuittila E-S (2018) Dung application increases CH4 production potential and alters the composition and abundance of methanogen community in restored peatland soils from Europe. Biol Fertil Soils 54:533–547

    Article  Google Scholar 

  • Hanson R, Hanson T (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • He R, Wooller MJ, Pohlman JW, Quensen J, Tiedje JM, Leigh MB (2012) Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments. ISME J 6:1937–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho A, Kerckhof FM, Luke C, Reim A, Krause S, Boon N, Bodelier PL (2013) Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environ Microbiol Rep 5:335–345

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Sun Y, Yu X, Zhang W (2015) Interactive effects of temperature and moisture on CO2 and CH4 production in a paddy soil under long-term different fertilization regimes. Biol Fertil Soils 52:285–294

    Article  CAS  Google Scholar 

  • IPCC (2013) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (eds Stocker TF et al). Cambridge University Press, Cambridge

  • Jia Z, Conrad R (2009) Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11:1658–1671

    Article  CAS  PubMed  Google Scholar 

  • Kip N, Fritz C, Langelaan ES, Pan Y, Bodrossy L, Pancotto V, Jetten MSM, Smolders AJP, Op den Camp HJM (2012) Methanotrophic activity and diversity in different Sphagnum magellanicum dominated habitats in the southernmost peat bogs of Patagonia. Biogeosciences 9:47–55

    Article  CAS  Google Scholar 

  • Knief C, Dunfield PF (2005) Response and adaptation of different methanotrophic bacteria to low methane mixing ratios. Environ Microbiol 7:1307–1317

    Article  CAS  PubMed  Google Scholar 

  • Luke C, Frenzel FP, Ho A, Fiantis D, Schad P, Schneider B, Schwark L, Utami SR (2014) Macroecology of methane-oxidizing bacteria: the β-diversity of pmoA genotypes in tropical and subtropical rice paddies. Environ Microbiol 16:72–83

    Article  CAS  PubMed  Google Scholar 

  • Ma K, Conrad R, Lu Y (2013) Dry/wet cycles change the activity and population dynamics of methanotrophs in rice field soil. Appl Environ Microbiol 79:4932–4939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macalady J, McMillan A, Dickens A, Tyler S, Scow K (2002) Population dynamics of type I and II methanotrophic bacteria in rice soils. Environ Microbiol 4:148–157

    Article  PubMed  Google Scholar 

  • Mayumi D, Yoshimoto T, Uchiyama H, Nomura N, Nakajima-Kambe T (2010) Seasonal change in methanotrophic diversity and populations in a rice field soil assessed by DNA-stable isotope probing and quantitative real-time PCR. Microbes Environ 25:156–163

    Article  PubMed  Google Scholar 

  • Mohanty SR, Bodelier PL, Floris V, Conrad R (2006) Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol 72:1346–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noll M, Frenzel P, Conrad R (2008) Selective stimulation of type I methanotrophs in a rice paddy soil by urea fertilization revealed by RNA-based stable isotope probing. FEMS Microbiol Ecol 65:125–132

    Article  CAS  PubMed  Google Scholar 

  • Nouchi I, Mariko S, Aoki K (1990) Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. Plant Physiol 94:59–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nouchi I, Hosono T, Aoki K, Minami K (1994) Seasonal-variation in methane flux from rice paddies associated with methane concentration in soil-water, rice biomass and temperature and its modeling. Plant Soil 161:195–208

    Article  CAS  Google Scholar 

  • Qiu Q, Noll M, Abraham WR, Lu Y, Conrad R (2008) Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ. ISME J 2:602–614

    Article  CAS  PubMed  Google Scholar 

  • Reim A, Luke C, Krause S, Pratscher J, Frenzel P (2012) One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic-anoxic interface in a flooded paddy soil. ISME J 6:2128–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schöler A, Jacquiod S, Vestergaard G, Schulz S, Schloter M (2017) Analysis of soil microbial communities based on amplicon sequencing of marker genes. Biol Fertil Soils 53:485–489

    Article  CAS  Google Scholar 

  • Shiau YJ, Cai Y, Jia Z, Chen CL, Chiu CY (2018) Phylogenetically distinct methanotrophs modulate methane oxidation in rice paddies across Taiwan. Soil Biol Biochem 124:59–69

    Article  CAS  Google Scholar 

  • Shrestha M, Abraham WR, Shrestha PM, Noll M, Conrad R (2008) Activity and composition of methanotrophic bacterial communities in planted rice soil studied by flux measurements, analyses of pmoA gene and stable isotope probing of phospholipid fatty acids. Environ Microbiol 10:400–412

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 40. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Cheng W, Hu R, Guigue J, Kimani SM, Tawaraya K, Xu X (2016) Simulating the effects of soil temperature and moisture in the off-rice season on rice straw decomposition and subsequent CH4 production during the growth season in a paddy soil. Biol Fertil Soils 52:739–748

    Article  CAS  Google Scholar 

  • Vestergaard G, Schulz S, Schöler A, Schloter M (2017) Making big data smart-how to use metagenomics to understand soil quality. Biol Fertil Soils 53:479–484

    Article  Google Scholar 

  • Walkiewicz A, Brzezińska M, Bieganowski A (2018) Methanotrophs are favored under hypoxia in ammonium-fertilized soils. Biol Fertil Soils 54:861–870

    Article  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Zhao J, Guo Z, Ma J, Xu H, Jia Z (2015) Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. ISME J 9:1062–1075

    Article  CAS  PubMed  Google Scholar 

  • Wartiainen I, Hestnes AG, McDonald IR, Svenning MM (2006) Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78 degrees N). Int J Syst Evol Microbiol 56:541–547

    Article  CAS  PubMed  Google Scholar 

  • Xia WW, Zhang CX, Zeng XW, Feng YZ, Weng JH, Lin XG, Zhu JG, Xiong ZQ, Xu J, Cai ZC, Jia ZJ (2011) Autotrophic growth of nitrifying community in an agricultural soil. ISME J 5:1226–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yin S, Li Y, Zhuang H, Li C, Liu C (2014) Comparison of greenhouse gas emissions from rice paddy fields under different nitrogen fertilization loads in Chongming Island. Eastern China Sci Total Environ 472:381–388

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Wang B, Jia Z (2015) Phylogenetically distinct phylotypes modulate nitrification in a paddy soil. Appl Environ Microbiol 81:3218–3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Zhang LM, Zheng YM, Di H, He JZ (2008) Abundance and community composition of methanotrophs in a Chinese paddy soil under long-term fertilization practices. J Soils Sediments 8:406–414

    Article  CAS  Google Scholar 

  • Zheng Y, Huang R, Wang BZ, Bodelier PLE, Jia ZJ (2014) Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil. Biogeosciences 11:3353–3368

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Nasrin Sultana gratefully acknowledged the Organization for Women in Science for the Developing World (OWSD) for a PhD Fellowship program.

Funding

This study is financially supported by the National Science Foundation of P.R. China (41501276, 41701302, 91751204), the Open Foundation of the Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region (201714), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15040000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Zhao or Zhongjun Jia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultana, N., Zhao, J., Zheng, Y. et al. Stable isotope probing of active methane oxidizers in rice field soils from cold regions. Biol Fertil Soils 55, 243–250 (2019). https://doi.org/10.1007/s00374-018-01334-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-018-01334-7

Keywords

Navigation