Skip to main content
Log in

Sensitivities to nitrogen and water addition vary among microbial groups within soil aggregates in a semiarid grassland

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

We investigated whether enhanced nitrogen (N) and water inputs would redistribute the microbial community within different soil aggregate size classes in a field manipulation experiment initiated in 2005. Distribution of microbial groups was monitored in large macroaggregates (>2000 μm), small macroaggregates (250–2000 μm), and microaggregates (<250 μm) in a semiarid grassland. Both arbuscular mycorrhizal (AM) fungi and saprophytic fungi were the most abundant in soil macroaggregates. The gram-negative bacteria were more abundant in soil microaggregates. Total phospholipid fatty acid (PLFA) concentration in general and actinomycetes in particular decreased with N addition under ambient precipitation but was unaffected by combined additions of N and water within the three soil aggregate fractions as compared to control plots. In contrast, the abundance of saprophytic fungi decreased with combined N and water addition, but it was not affected by N addition under ambient precipitation. The abundance of gram-positive bacteria increased with N addition under both ambient and elevated water conditions for all soil aggregate fractions. In summary, the higher short-term nutrient and water availabilities provoked a shift in soil microbial community composition and increased total PLFA abundance irrespectively of the level of soil aggregation. In the long term, this could destabilize soil carbon pools and influence the nutrient limitation of soil biota within different soil aggregate size classes under future global change scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems. Bioscience 48:921–934

    Article  Google Scholar 

  • Aciego Pietri JA, Brookes PC (2009) Substrate inputs and pH as factors controlling microbial biomass, activity and community structure in an arable soil. Soil Biol Biochem 41:1396–1405

    Article  CAS  Google Scholar 

  • Allison SD, Treseder KK (2008) Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob Chang Biol 14:2898–2909

    Article  Google Scholar 

  • Allison VJ, Miller RM, Jastrow JD, Matamala R, Zak DR (2005) Changes in soil microbial community structure in a tallgrass prairie chronosequence. Soil Sci Soc Am J 69:1412–1421

    Article  CAS  Google Scholar 

  • Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543–545

    Article  CAS  PubMed  Google Scholar 

  • Bach EM, Baer SG, Meyer CK, Six J (2010) Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol Biochem 42:2182–2191

    Article  CAS  Google Scholar 

  • Bai Y, Wu J, Clark CM, Naeem S, Pan Q, Huang J, Zhang L, Han X (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands. Glob Chang Biol 16:358–372

    Article  Google Scholar 

  • Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol 35:265–278

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Xu Z, Hu H, Hu Y, Hao Z, Jiang Y, Chen B (2013) Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia. Appl Soil Ecol 68:36–45

    Article  Google Scholar 

  • Chen X, Li Z, Liu M, Jiang C, Che Y (2015) Microbial community and functional diversity associated with different aggregate fractions of a paddy soil fertilized with organic manure and/or NPK fertilizer for 20 years. J Soils Sediment 15:292–301

    Article  CAS  Google Scholar 

  • Cheng L, Booker FL, Tu C, Burkey KO, Zhou L, Shew HD, Rufty TW, Hu S (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337:1084–1087

    Article  CAS  PubMed  Google Scholar 

  • De Graaff MA, Classen AT, Castro HF, Schadt CW (2010) Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytol 188:1055–1064

    Article  CAS  PubMed  Google Scholar 

  • De Gryze S, Six J, Brits C, Merckx R (2005) A quantification of short-term macroaggregate dynamics: influences of wheat residue input and texture. Soil Biol Biochem 37:55–66

    Article  CAS  Google Scholar 

  • DeForest JL, Zak DR, Pregitzer KS, Burton AJ (2004) Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Sci Soc Am J 68:132–138

    Article  CAS  Google Scholar 

  • Dorodnikov M, Blagodatskaya E, Blagodatsky S, Fangmeier A, Kuzyakov Y (2009) Stimulation of r-vs. K-selected microorganisms by elevated atmospheric CO2 depends on soil aggregate size. FEMS Microbiol Ecol 69:43–52

    Article  CAS  PubMed  Google Scholar 

  • Dungait JA, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18:1781–1796

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. P Natl Acad Sci USA 103:626–631

    Article  CAS  Google Scholar 

  • Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecol Manag 196:159–171

    Article  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1621–1625

    Article  Google Scholar 

  • Griffiths BS, Ritz K, Ebblewhite N, Dobson G (1998) Soil microbial community structure: effects of substrate loading rates. Soil Biol Biochem 31:145–153

    Article  Google Scholar 

  • Gude A, Kandeler E, Gleixner G (2012) Input related microbial carbon dynamic of soil organic matter in particle size fractions. Soil Biol Biochem 47:209–219

    Article  CAS  Google Scholar 

  • Hattori T (1973) Microbial life in soil. Marcel Dekker, New York

    Google Scholar 

  • Hawkes CV, Kivlin SN, Rocca JD, Huguet V, Thomsen MA, Suttle KB (2011) Fungal community responses to precipitation. Glob Chang Biol 17:1637–1645

    Article  Google Scholar 

  • Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308

    Article  CAS  PubMed  Google Scholar 

  • IUSS WG (2014) International soil classification system for naming soils and creating legends for soil maps. WRBWorld Reference Base for Soil Resources 2014, FAO, Rome

  • Jastrow JD, Amonette JE, Bailey VL (2007) Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Clim Chang 80:5–23

    Article  CAS  Google Scholar 

  • Kang L, Han X, Zhang Z, Sun OJ (2007) Grassland ecosystems in China: review of current knowledge and research advancement. Philos T R Soc B 362:997–1008

    Article  Google Scholar 

  • Keeler BL, Hobbie SE, Kellogg LE (2009) Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition. Ecosystems 12:1–15

    Article  CAS  Google Scholar 

  • Kemmitt SJ, Wright D, Goulding KW, Jones DL (2006) pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol Biochem 38:898–911

    Article  CAS  Google Scholar 

  • Li J, Lin S, Taube F, Pan Q, Dittert K (2011) Above and belowground net primary productivity of grassland influenced by supplemental water and nitrogen in Inner Mongolia. Plant Soil 340:253–264

    Article  CAS  Google Scholar 

  • Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang F (2013) Enhanced nitrogen deposition over China. Nature 494:459–462

    Article  CAS  PubMed  Google Scholar 

  • Lombao A, Barreiro A, Carballas T, Fontúrbel MT, Martín A, Vega JA, Fernández C, Díaz-Raviña M (2015) Changes in soil properties after a wildfire in Fragas do Eume Natural Park (Galicia, NW Spain). Catena 135:409–418

    Article  CAS  Google Scholar 

  • Männistö M, Ganzert L, Tiirola M, Häggblom MM, Stark S (2016) Do shifts in life strategies explain microbial community responses to increasing nitrogen in tundra soil? Soil Biol Biochem 96:216–228

    Article  Google Scholar 

  • Manzoni S, Schimel JP, Porporato A (2012) Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93:930–938

    Article  PubMed  Google Scholar 

  • Nielsen UN, Ball BA (2015) Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Glob Chang Biol 21:1407–1421

    Article  PubMed  Google Scholar 

  • Nishiyama M, Senoo K, Wada H, Matsumoto S (1992) Identification of soil micro-habitats for growth, death and survival of a bacterium, γ-1, 2, 3, 4, 5, 6-hexachlorocyclohexane-assimilating Sphingomonas paucimobilis, by fractionation of soil. FEMS Microbiol Lett 101:145–150

    CAS  Google Scholar 

  • Olsson PA (1999) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microb Ecol 29:303–310

    Article  CAS  Google Scholar 

  • Pennanen T, Fritze H, Vanhala P, Kiikkilä O, Neuvonen S, Bååth E (1998) Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain. Appl Environ Microb 64:2173–2180

    CAS  Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils 51:403–415

    Article  CAS  Google Scholar 

  • Pinkart HC, Ringelberg DB, Piceno YM, Macnaughton SJ, White DC (2002) Biochemical approaches to biomass measurements and community structure analysis. In: Hurst CJ (Ed) Manual of environmental microbiology. ASM Press, Washington, DC, pp 101–113

  • Poll C, Thiede A, Wermbter N, Sessitsch A, Kandeler E (2003) Micro-scale distribution of microorganisms and microbial enzyme activities in a soil with long-term organic amendment. Eur J Soil Sci 54:715–724

    Article  Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Rousk J, Brookes PC, Bååth E (2011) Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘Park Grass’ UK grassland experiment. FEMS Microb Ecol 76:89–99

    Article  CAS  Google Scholar 

  • Rousk K, Rousk J, Jones DL, Zackrisson O, DeLuca TH (2013) Feather moss nitrogen acquisition across natural fertility gradients in boreal forests. Soil Biol Biochem 61:86–95

    Article  CAS  Google Scholar 

  • Santos F, Torn MS, Bird JA (2012) Biological degradation of pyrogenic organic matter in temperate forest soils. Soil Biol Biochem 51:115–124

    Article  CAS  Google Scholar 

  • Schutter ME, Dick RP (2002) Microbial community profiles and activities among aggregates of winter fallow and cover-cropped soil. Soil Sci Soc Am J 66:142–153

    Article  CAS  Google Scholar 

  • Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E (2001) Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microb 67:4215–4224

    Article  CAS  Google Scholar 

  • Strickland MS, Rousk J (2010) Considering fungal: bacterial dominance in soils—methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–1395

    Article  CAS  Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120

    Article  PubMed  Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515

    Article  Google Scholar 

  • Van Den Berg LJ, Dorland E, Vergeer P, Hart MA, Bobbink R, Roelofs JG (2005) Decline of acid-sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH. New Phytol 166:551–564

    Article  CAS  PubMed  Google Scholar 

  • Van Gestel M, Merckx R, Vlassak K (1996) Spatial distribution of microbial biomass in microaggregates of a silty-loam soil and the relation with the resistance of microorganisms to soil drying. Soil Biol Biochem 28:503–510

    Article  CAS  Google Scholar 

  • Wang R, Filley TR, Xu Z, Wang X, Li MH, Zhang Y, Luo W, Jiang Y (2014) Coupled response of soil carbon and nitrogen pools and enzyme activities to nitrogen and water addition in a semi-arid grassland of Inner Mongolia. Plant Soil 381:323–336

    Article  CAS  Google Scholar 

  • Wang R, Dungait JAJ, Creamer CA, Cai J, Li B, Xu Z, Zhang Y, Ma Y, Jiang Y (2015a) Carbon and nitrogen dynamics in soil aggregates under long-term nitrogen and water addition in a temperate steppe. Soil Sci Soc Am J 79:527–535

    Article  CAS  Google Scholar 

  • Wang R, Dorodnikov M, Yang S, Zhang Y, Filley TR, Turco RF, Zhang Y, Xu Z, Li H, Jiang Y (2015b) Responses of enzymatic activities within soil aggregates to 9-year nitrogen and water addition in a semi-arid grassland. Soil Biol Biochem 81:159–167

    Article  CAS  Google Scholar 

  • Wang R, Creamer CA, Wang X, He P, Xu Z, Jiang Y (2016) The effects of a 9-year nitrogen and water addition on soil aggregate phosphorus and sulfur availability in a semi-arid grassland. Ecol Indic 61:806–814

    Article  CAS  Google Scholar 

  • Wang R, Dungait JA, Buss HL, Yang S, Zhang Y, Xu Z, Jiang Y (2017) Base cations and micronutrients in soil aggregates as affected by enhanced nitrogen and water inputs in a semi-arid steppe grassland. Sci Total Environ. doi:10.1016/j.scitotenv.2016.09.018

  • Wei C, Yu Q, Bai E, Lü X, Li Q, Xia J, Kardol P, Liang W, Wang Z, Han X (2013) Nitrogen deposition weakens plant–microbe interactions in grassland ecosystems. Glob Chang Biol 19:3688–3697

    Article  PubMed  Google Scholar 

  • Wright DA, Killham K, Glover LA, Prosser JI (1993) The effect of location in soil on protozoal grazing of a genetically modified bacterial inoculum. Geoderma 56:633–640

    Article  Google Scholar 

  • Xu Z, Wan S, Ren H, Han X, Li M-H, Cheng W, Jiang Y (2012) Effects of water and nitrogen addition on species turnover in temperate grasslands in Northern China. PLoS One 7:e39762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao H, Chapman SJ, Thornton B, Paterson E (2015) 13C PLFAs: a key to open the soil microbial black box? Plant Soil 392:3–15

    Article  CAS  Google Scholar 

  • Zaitlin B, Turkington K, Parkinson D, Clayton G (2004) Effects of tillage and inorganic fertilizers on culturable soil actinomycete communities and inhibition of fungi by specific actinomycetes. Appl Soil Ecol 26:53–62

    Article  Google Scholar 

  • Zak DR, Ringelberg DB, Pregitzer KS, Randlett DL, White DC, Curtis PS (1996) Soil microbial communities beneath Populus grandidentata grown under elevated atmospheric CO2. Ecol Appl 6:257–262

    Article  Google Scholar 

  • Zhalnina K, Dias R, de Quadros PD, Davis-Richardson A, Camargo FA, Clark IM, McGrath SP, Hirsch PR, Triplett EW (2015) Soil pH determines microbial diversity and composition in the park grass experiment. Microb Ecol 69:395–406

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Wan S, Guo J, Han G, Gutknecht J, Schmid B, Yu L, Liu W, Bi J, Wang Z, Ma K (2015) Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands. Soil Biol Biochem 89:12–23

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge support provided by Duolun Restoration Ecological Research Station. We thank Mr. Yuanshun Tan for helping in the extraction of phospholipid fatty acids. The study was finally supported by the National Key Research and Development Program of China (2016YFC0500707) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15010103 and XDB15010302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Dorodnikov, M., Dijkstra, F.A. et al. Sensitivities to nitrogen and water addition vary among microbial groups within soil aggregates in a semiarid grassland. Biol Fertil Soils 53, 129–140 (2017). https://doi.org/10.1007/s00374-016-1165-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-016-1165-x

Keywords

Navigation