Skip to main content
Log in

The effects of organic residue quality on growth and reproduction of Aporrectodea trapezoides under different moisture conditions in a salt-affected agricultural soil

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

We studied the effects of organic residues with different C/N ratios and soil moisture contents on the growth and reproduction of the earthworm Aporrectodea trapezoides to investigate potential measures to increase its population in a salt-affected agricultural soil. The experiment consisted of eight treatments in a fully factorial design: low or high C/N ratio organic residue, soil moisture at 75 or 95% field capacity (FC), and salinity (as electrical conductivity (EC)) of 3.07 or 4.77 dS m−1. It was carried out under controlled laboratory conditions for 4 months. In the low C/N ratio organic residue application, there was a significantly greater mean total dry weight and number of clitellate individuals of A. trapezoides, regardless of the soil moisture and salinity content, which may be due to the greater soil microbial biomass and dissolved organic N (DON) derived from the low C/N ratio organic residue. Generally, more cocoons were found in the application of low C/N ratio clover residue at months 2 and 4. At an EC of 3.07 dS m−1 and moisture content of 75% field capacity (FC), significantly more hatchlings were found when low C/N ratio clover residue was applied compared to the high C/N ratio wheat residue. High soil moisture content (95% FC) resulted in a significantly greater mean total dry weight of A. trapezoides at months 2 and 4 and significantly more clitellate individuals and cocoons at month 4 compared to the low soil moisture content (75% FC), but only when the low C/N ratio residue was applied. In contrast, high soil moisture content (95% FC) resulted in significantly less hatchling numbers at an EC of 3.07 dS m−1, only when the low C/N ratio residue was applied. These results suggest that the organic residue type and soil moisture content can regulate the growth and reproduction of the earthworm A. trapezoides, which should help to improve the recovery of their populations in salt-affected agricultural soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baker GH, Brown G, Butt K, Curry JP, Scullion J (2006) Introduced earthworms in agricultural and reclaimed land: their ecology and influences on soil properties, plant production and other soil biota. Biol Invasions 8:1301–1316

    Article  Google Scholar 

  • Berry EC, Jordan D (2001) Temperature and soil moisture content effects on the growth of Lumbricus terrestris (Oligochaeta: Lumbricidae) under laboratory conditions. Soil Biol Biochem 33:133–136

    Article  CAS  Google Scholar 

  • Bostrom U, Lofsholmin A (1986) Growth of earthworms (Allolobophora Caliginosa) fed shoots and roots of barley, meadow fescue and lucerne studies in relation to particle-size, protein, crude fiber content and toxicity. Pedobiologia 29:1–12

    Google Scholar 

  • Boyer S, Wratten SD (2010) The potential of earthworms to restore ecosystem services after opencast mining—a review. Basic Appl Ecol 11:196–203

    Article  Google Scholar 

  • Bradley RL, Whalen J, Chagnon PL, Lanoix M, Alves MC (2011) Nitrous oxide production and potential denitrification in soils from riparian buffer strips: influence of earthworms and plant litter. Appl Soil Ecol 47:6–13

    Article  Google Scholar 

  • Brockett BFT, Prescott CE, Grayston SJ (2012) Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol Biochem 44:9–20

    Article  CAS  Google Scholar 

  • Butt KR (2008) Earthworms in soil restoration: lessons learned from United Kingdom case studies of land reclamation. Restor Ecol 16:637–641

    Article  Google Scholar 

  • Butt KR (2011) Food quality affects production of Lumbricus terrestris (L.) under controlled environmental conditions. Soil Biol Biochem 43:2169–2175

    Article  CAS  Google Scholar 

  • Capowiez Y, Bottinelli N, Sammartino S, Michel E, Jouquet P (2015) Morphological and functional characterisation of the burrow systems of six earthworm species (Lumbricidae). Biol Fert Soils 51:869–877

    Article  Google Scholar 

  • Curry JP (2004) Factors affecting the abundance of earthworms in soils. In: Edwards CA (ed) Earthworm ecology. CRC Press, Boca Raton, pp. 91–113

    Chapter  Google Scholar 

  • Curry JP, Doherty P, Purvis G, Schmidt O (2008) Relationships between earthworm populations and management intensity in cattle-grazed pastures in Ireland. Appl Soil Ecol 39:58–64

    Article  Google Scholar 

  • Curry JP, Schmidt O (2007) The feeding ecology of earthworms—a review. Pedobiologia 50:463–477

    Article  Google Scholar 

  • Duarte AP, Melo VF, Brown GG, Pauletti V (2014) Earthworm (Pontoscolex corethrurus) survival and impacts on properties of soils from a lead mining site in Southern Brazil. Biol Fert Soils 50:851–860

    Article  CAS  Google Scholar 

  • Dugès A (1828) Recherches sur la circulation, la respiration et la reproduction des Annelides abranches. Annales des sciences naturelles, Paris. 15:284--337

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Chapman and Hall, London

    Google Scholar 

  • Epie KE, Cass S, Stoddard FL (2015) Earthworm communities under boreal grass and legume bioenergy crops in pure stands and mixtures. Pedobiologia 58:49–54

    Article  Google Scholar 

  • Eriksen-Hamel NS, Whalen JK (2006) Growth rates of Aporrectodea caliginosa (Oligochaetae: Lumbricidae) as influenced by soil temperature and moisture in disturbed and undisturbed soil columns. Pedobiologia 50:207–215

    Article  Google Scholar 

  • Ernst G, Henseler I, Felten D, Emmerling C (2009) Decomposition and mineralization of energy crop residues governed by earthworms. Soil Biol Biochem 41:1548–1554

    Article  CAS  Google Scholar 

  • Ernst G, Müller A, Göhler H, Emmerling C (2008) C and N turnover of fermented residues from biogas plants in soil in the presence of three different earthworm species (Lumbricus terrestris, Aporrectodea longa, Aporrectodea caliginosa). Soil Biol Biochem 40:1413–1420

    Article  CAS  Google Scholar 

  • Farrell M, Hill PW, Farrar J, DeLuca TH, Roberts P, Kielland K, Dahlgren R, Murphy DV, Hobbs PJ, Bardgett RD, Jones DL (2013) Oligopeptides represent a preferred source of organic N uptake: a global phenomenon? Ecosystems 16:133–145

    Article  CAS  Google Scholar 

  • Fayolle L, Michaud H, Cluzeau D, Stawiecki J (1997) Influence of temperature and food source on the life cycle of the earthworm Dendrobaena veneta (Oligochaeta). Soil Biol Biochem 29:747–750

    Article  CAS  Google Scholar 

  • Holmstrup M (2001) Sensitivity of life history parameters in the earthworm Aporrectodea caliginosa to small changes in soil water potential. Soil Biol Biochem 33:1217–1223

    Article  CAS  Google Scholar 

  • Hubbard VC, Jordan D, Stecker JA (1999) Earthworm response to rotation and tillage in a Missouri claypan soil. Biol Fert Soils 29:343–347

    Article  Google Scholar 

  • Hurisso TT, Davis JG, Brummer JE, Stromberger ME, Stonaker FH, Kondratieff BC, Booher MR, Goldhamer DA (2011) Earthworm abundance and species composition in organic forage production systems of northern Colorado receiving different soil amendments. Appl Soil Ecol 48:219–226

    Article  Google Scholar 

  • Ivask M, Meriste M, Kuu A, Kutti S, Sizov E (2012) Effect of flooding by fresh and brackish water on earthworm communities along Matsalu Bay and the Kasari River. Eur J Soil Biol 53:11–15

    Article  CAS  Google Scholar 

  • Ivask M, Truu J, Kuu A, Truu M, Leito A (2007) Earthworm communities of flooded grasslands in Matsalu, Estonia. Eur J Soil Biol 43:71–76

    Article  Google Scholar 

  • Kautz T, Stumm C, Kösters R, Köpke U (2010) Effects of perennial fodder crops on soil structure in agricultural headlands. J Plant Nutr Soil Sc 173:490–501

    Article  CAS  Google Scholar 

  • Kukkonen S, Palojärvi A, Räkköläinen M, Vestberg M (2006) Cropping history and peat amendment-induced changes in strawberry field earthworm abundance and microbial biomass. Soil Biol Biochem 38:2152–2161

    Article  CAS  Google Scholar 

  • Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193

    CAS  Google Scholar 

  • Lee KE (1985) Earthworms: their ecology and relationships with soils and land use. Academic Press, Sydney

    Google Scholar 

  • Leroy BLM, Schmidt O, Van den Bossche A, Reheul D, Moens M (2008) Earthworm population dynamics as influenced by the quality of exogenous organic matter. Pedobiologia 52:139–150

    Article  CAS  Google Scholar 

  • MacPherson T, Bouman OT (2013) Concordance of N bio-indicators: dandelion and earthworms in a rotational pasture. Ecol Indic 24:633–635

    Article  CAS  Google Scholar 

  • Manhães CMC, Gama-Rodrigues EF, Silva Moço MK, Gama-Rodrigues AC (2013) Meso- and macrofauna in the soil and litter of leguminous trees in a degraded pasture in Brazil. Agroforest Syst 87:993–1004

    Article  Google Scholar 

  • McDaniel JP, Stromberger ME, Barbarick KA, Cranshaw W (2013) Survival of Aporrectodea caliginosa and its effects on nutrient availability in biosolids amended soil. Appl Soil Ecol 71:1–6

    Article  Google Scholar 

  • Milcu A, Partsch S, Scherber C, Weisser WW, Scheu S (2008) Earthworms and legumes control litter decomposition in a plant diversity gradient. Ecology 89:1872–1882

    Article  PubMed  Google Scholar 

  • Owojori OJ, Reinecke AJ (2010) Effects of natural (flooding and drought) and anthropogenic (copper and salinity) stressors on the earthworm Aporrectodea caliginosa under field conditions. Appl Soil Ecol 44:156–163

    Article  Google Scholar 

  • Owojori OJ, Reinecke AJ, Voua-Otomo P, Reinecke SA (2009) Comparative study of the effects of salinity on life-cycle parameters of four soil-dwelling species (Folsomia candida, Enchytraeus doerjesi, Eisenia fetida and Aporrectodea caliginosa). Pedobiologia 52:351–360

    Article  CAS  Google Scholar 

  • Perreault JM, Whalen JK (2006) Earthworm burrowing in laboratory microcosms as influenced by soil temperature and moisture. Pedobiologia 50:397–403

    Article  Google Scholar 

  • Piotrowska K, Connolly J, Finn J, Black A, Bolger T (2013) Evenness and plant species identity affect earthworm diversity and community structure in grassland soils. Soil Biol Biochem 57:713–719

    Article  CAS  Google Scholar 

  • Poll C, Marhan S, Ingwersen J, Kandeler E (2008) Dynamics of litter carbon turnover and microbial abundance in a rye detritusphere. Soil Biol Biochem 40:1306–1321

    Article  CAS  Google Scholar 

  • Ponge JF (2015) The soil as an ecosystem. Biol Fert Soils 51:645–648

    Article  CAS  Google Scholar 

  • Potthoff M, Loftfield N, Buegger F, Wick B, John B, Joergensen RG, Flessa H (2003) The determination of delta C-13 in soil microbial biomass using fumigation-extraction. Soil Biol Biochem 35:947–954

    Article  CAS  Google Scholar 

  • Rozen A (2006) Internal regulation of reproduction seasonality in earthworm Dendrobaena octaedra (Savigny, 1826) (Lumbricidae, Oligochaeta). Soil Biol Biochem 38:180–182

    Article  CAS  Google Scholar 

  • Salamon J-A, Alphei J, Ruf A, Schaefer M, Scheu S, Schneider K, Sührig A, Maraun M (2006) Transitory dynamic effects in the soil invertebrate community in a temperate deciduous forest: effects of resource quality. Soil Biol Biochem 38:209–221

    Article  CAS  Google Scholar 

  • Satchell JE (1967) Lumbricidae. In: Burges A, Raw F (eds) Soil biology. Academic Press, London, pp. 259–322

    Chapter  Google Scholar 

  • Schmidt O, Clements RO, Donaldson G (2003) Why do cereal-legume intercrops support large earthworm populations? Appl Soil Ecol 22:181–190

    Article  Google Scholar 

  • Setia R, Marschner P (2013) Erratum to: carbon mineralization in saline soils as affected by residue composition and water potential. Biol Fert Soils 49:777–777

    Article  Google Scholar 

  • Shan J, Liu J, Wang YF, Yan XY, Guo HY, Li XZ, Ji R (2013) Digestion and residue stabilization of bacterial and fungal cells, protein, peptidoglycan, and chitin by the geophagous earthworm Metaphire guillelmi. Soil Biol Biochem 64:9–17

    Article  CAS  Google Scholar 

  • Tao J, Gu W, Griffiths B, Liu XJ, Xu YJ, Zhang H (2012) Maize residue application reduces negative effects of soil salinity on the growth and reproduction of the earthworm Aporrectodea trapezoides, in a soil mesocosm experiment. Soil Biol Biochem 49:46–51

    Article  CAS  Google Scholar 

  • Tao Y, Gu W, Chen J, Tao J, Xu YJ, Zhang H (2013) The influence of land use practices on earthworm communities in saline agriculture soils of the west coast region of China’s Bohai Bay. Plant Soil Environ 59:8–13

    CAS  Google Scholar 

  • Taylor AR, Taylor AFS (2014) Assessing daily egestion rates in earthworms: using fungal spores as a natural soil marker to estimate gut transit time. Biol Fert Soils 50:179–183

    Article  Google Scholar 

  • Tian G, Brussaard L, Kang BT (1993) Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions: effects on soil fauna. Soil Biol Biochem 25:731–737

    Article  Google Scholar 

  • Tian G, Olimah JA, Adeoye GO, Kang BT (2000) Regeneration of earthworm populations in a degraded soil by natural and planted fallows under humid tropical conditions. Soil Sci Soc Am J 64:222–228

    Article  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass-C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Wang Y, Chen J, Gu W, Xu YJ, Gu JY, Tao J (2016) Earthworm activities increase the leaching of salt and water from salt-affected agricultural soil during the wet-dry process under simulated rainfall conditions. Biol Fert Soils 52:323–330

    Article  CAS  Google Scholar 

  • Wever LA, Lysyk TJ, Clapperton MJ (2001) The influence of soil moisture and temperature on the survival, aestivation, growth and development of juvenile Aporrectodea tuberculata (Eisen) (Lumbricidae). Pedobiologia 45:121–133

    Article  Google Scholar 

  • Whalen JK, Parmelee RW (1999) Quantification of nitrogen assimilation efficiencies and their use to estimate organic matter consumption by the earthworms Aporrectodea tuberculata (Eisen) and Lumbricus terrestris L. Appl Soil Ecol 13:199–208

    Article  Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation-extraction an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Wu YP, Zhang Y, Bi YM, Sun ZJ (2015) Biodiversity in saline and non-saline soils along the Bohai Sea coast, China. Pedosphere 25:307–315

    Article  Google Scholar 

  • Yang X, Chen J (2009) Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil Biol Biochem 41:910–918

    Article  CAS  Google Scholar 

  • Zhou WJ, Sha LQ, Schaefer DA, Zhang YP, Song QH, Tan ZH, Deng Y, Deng XB, Guan HL (2015) Direct effects of litter decomposition on soil dissolved organic carbon and nitrogen in a tropical rainforest. Soil Biol Biochem 81:255–258

    Article  CAS  Google Scholar 

  • Zorn MI, Van Gestel CAM, Eijsackers H (2005) Species-specific earthworm population responses in relation to flooding dynamics in a Dutch floodplain soil. Pedobiologia 49:189–198

    Article  Google Scholar 

  • Zorn MI, Van Gestel CAM, Morrien E, Wagenaar M, Eijsackers H (2008) Flooding responses of three earthworm species, Allolobophora chlorotica, Aporrectodea caliginosa and Lumbricus rubellus, in a laboratory-controlled environment. Soil Biol Biochem 40:587–593

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Bryan Griffiths for providing writing assistance. This research was supported by the National Natural Science Foundation of China (41201237) and the National Science and Technology ministry (2014BAD14B03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Gu, W., Tao, J. et al. The effects of organic residue quality on growth and reproduction of Aporrectodea trapezoides under different moisture conditions in a salt-affected agricultural soil. Biol Fertil Soils 53, 103–113 (2017). https://doi.org/10.1007/s00374-016-1158-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-016-1158-9

Keywords

Navigation