Skip to main content
Log in

An in-depth analysis of actinobacterial communities shows their high diversity in grassland soils along a gradient of mixed heavy metal contamination

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Several previous studies indicated that Actinobacteria may be enriched in soils with elevated content of heavy metals. In this study, we have developed a method for the in-depth analysis of actinobacterial communities in soil through phylum-targeted high-throughput sequencing and used it to address this question and examine the community composition in grassland soils along a gradient of heavy metal contamination (Cu, Zn, Cd, Pb). The use of the 16Sact111r primer specific for Actinobacteria resulted in a dataset obtained by pyrosequencing where over 98 % of the sequences belonged to Actinobacteria. The diversity within the Actinobacterial community was not affected by the heavy metals, but the contamination was the most important factor affecting community composition. The most significant changes in community composition were due to the content of Cu and Pb, while the effects of Zn and Cd were relatively minor. For the most abundant actinobacterial taxa, the abundance of taxa identified as members of the genera Acidothermus, Streptomyces, Pseudonocardia, Janibacter and Microlunatus increased with increasing metal content, while those belonging to Jatrophihabitans and Actinoallomurus decreased. The genus Ilumatobacter contained operational taxonomic units (OTUs) that responded to heavy metals both positively and negatively. This study also confirmed that Actinobacteria appear to be less affected by heavy metals than other bacteria. Because several Actinobacteria were also identified in playing a significant role in cellulose and lignocellulose decomposition in soil, they potentially represent important decomposers of organic matter in such environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdulla HM, El-Shatoury SA (2007) Actinomycetes in rice straw decomposition. Waste Manag 27:850–853

    Article  CAS  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in-situ detection of individual microbial-cells without cultivation. Microbiol Rev 59:143–169

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anderson I, Abt B, Lykidis A, Klenk HP, Kyrpides N, Ivanova N (2012) Genomics of aerobic cellulose utilization systems in Actinobacteria. PLoS One 7, e39331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bachar A, Al-Ashhab A, Soares MIM, Sklarz MY, Angel R, Ungar ED, Gillor O (2010) Soil microbial abundance and diversity along a low precipitation gradient. Microb Ecol 60:453–461

    Article  PubMed  Google Scholar 

  • Bajkic S, Narancic T, Dokic L, Dordevic D, Nikodinovic-Runic J, Moric I, Vasiljevic B (2013) Microbial diversity and isolation of multiple metal-tolerant bacteria from surface and underground pits within the copper mining and smelting complex bor. Arch Biol Sci 65:375–386

    Article  Google Scholar 

  • Baldrian P, Kolarik M, Štursová M, Kopecký J, Valášková V, Větrovský T, Žifčáková L, Šnajdr J, Rídl J, Vlček Č, Voříšková J (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6:248–258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berg J, Brandt KK, Al-Soud WA, Holm PE, Hansen LH, Sorensen SJ, Nybroe O (2012) Selection for Cu-tolerant bacterial communities with altered composition, but unaltered richness, via long-term Cu exposure. Appl Environ Microbiol 78:7438–7446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berlemont R, Martiny AC (2013) Phylogenetic distribution of potential cellulases in bacteria. Appl Environ Microbiol 79:1545–1554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MWW, Kelly RM (2014) Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 38:393–448

    Article  CAS  PubMed  Google Scholar 

  • Brumelis G, Lapina L, Nikodemus O, Tabors G (2002) Use of the O horizon of forest soils in monitoring metal deposition in Latvia. Water Air Soil Pollut 135:291–309

    Article  CAS  Google Scholar 

  • Chater KF, Biro S, Lee KJ, Palmer T, Schrempf H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34:171–198

    Article  CAS  PubMed  Google Scholar 

  • Chodak M, Golebiewski M, Morawska-Ploskonka J, Kuduk K, Niklinska M (2013) Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl Soil Ecol 64:7–14

    Article  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294–D296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crawford DL (1978) Lignocellulose decomposition by selected streptomyces strains. Appl Environ Microbiol 35:1041–1045

    PubMed Central  CAS  PubMed  Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  PubMed  Google Scholar 

  • Dominguez-Mendoza CA, Bello-Lopez JM, Navarro-Noya YE, de Leon-Lorenzana AS, Delgado-Balbuena L, Gomez-Acata S, Ruiz-Valdiviezo VM, Ramirez-Villanueva DA, Luna-Guido M, Dendooven L (2014) Bacterial community structure in fumigated soil. Soil Biol Biochem 73:122–129

    Article  CAS  Google Scholar 

  • Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, Edrington TS (2008) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8:125

    Article  PubMed Central  PubMed  Google Scholar 

  • Dunbar J, Takala S, Barns SM, Davis JA, Kuske CR (1999) Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl Environ Microbiol 65:1662–1669

    PubMed Central  CAS  PubMed  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Enkhbaatar B, Temuujin U, Lim JH, Chi WJ, Chang YK, Hong SK (2012) Identification and characterization of a xyloglucan-specific family 74 glycosyl hydrolase from Streptomyces coelicolor A3(2). Appl Environ Microbiol 78:607–611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fan FL, Yin C, Tang YJ, Li ZJ, Song A, Wakelin SA, Zou J, Liang YC (2014) Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by C-13-DNA-SIP. Soil Biol Biochem 70:12–21

    Article  CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Golebiewski M, Deja-Sikora E, Cichosz M, Tretyn A, Wrobel B (2014) 16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils. Microb Ecol 67:635–647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gremion F, Chatzinotas A, Harms H (2003) Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ Microbiol 5:896–907

    Article  CAS  PubMed  Google Scholar 

  • Hernandez L, Probst A, Probst JL, Ulrich E (2003) Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Sci Total Environ 312:195–219

    Article  CAS  PubMed  Google Scholar 

  • Hur M, Kim Y, Song HR, Kim JM, Choi YI, Yi H (2011) Effect of genetically modified poplars on soil microbial communities during the phytoremediation of waste mine tailings. Appl Environ Microbiol 77:7611–7619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ivshina IB, Kuyukina MS, Kostina LV (2013) Adaptive mechanisms of nonspecific resistance to heavy metal ions in alkanotrophic actinobacteria. Russ J Ecol 44:123–130

    Article  CAS  Google Scholar 

  • Kalac P, Burda J, Staskova I (1991) Concentrations of lead, cadmium, mercury and copper in mushrooms in the vicinity of lead smelter. Sci Total Environ 105:109–119

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. In: Posada D (ed) Bioinformatics for DNA sequence analysis, vol 537. Methods Mol Biol. p 39–64

  • Kelly JJ, Haggblom MM, Tate RL (2003) Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles. Biol Fertil Soils 38:65–71

    Article  CAS  Google Scholar 

  • Kyselkova M, Kopecky J, Felfoldi T, Cermak L, Omelka M, Grundmann GL, Moenne-Loccoz Y, Sagova-Mareckova M (2008) Development of a 16S rRNA gene-based prototype microarray for the detection of selected actinomycetes genera Antonie Van Leeuwenhoek. Int J Gen Mol Microbiol 94:439–453

    CAS  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leigh MB, Pellizari VH, Uhlik O, Sutka R, Rodrigues J, Ostrom NE, Zhou JH, Tiedje JM (2007) Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J 1:134–148

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Wang J, Zhang CB (2013) Evaluation of soil chemical properties and actinomycete community structure following a temporal sequence of revegetation through Paulownia fortunei in the heavy metal-contaminated soil. Water Air Soil Pollut 224:1730

    Article  Google Scholar 

  • Madhaiyan M, Hu CJ, Kim SJ, Weon HY, Kwon SW, Ji LH (2013) Jatrophihabitans endophyticus gen. nov., sp nov., an endophytic actinobacterium isolated from a surface-sterilized stem of Jatropha curcas L. Int J Syst Evol Microbiol 63:1241–1248

    Article  PubMed  Google Scholar 

  • Matsumoto A, Fukuda A, Inahashi Y, Omura S, Takahashi Y (2012) Actinoallomurus radicium sp. nov., isolated from the roots of two plant species. Int J Syst Evol Microbiol 62:295–298

    Article  CAS  PubMed  Google Scholar 

  • Moffett BF, Nicholson FA, Uwakwe NC, Chambers BJ, Harris JA, Hill TCJ (2003) Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiol Ecol 43:13–19

    Article  CAS  PubMed  Google Scholar 

  • Mühlbachová G (2011) Soil microbial activities and heavy metal mobility in long-term contaminated soils after addition of EDTA and EDDS. Ecol Eng 37:1064–1071

    Article  Google Scholar 

  • Mühlbachová G, Ságová-Marečková M, Omelka M, Szákova J, Tlustoš P (2015) The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site. Sci Total Environ 502:218–223

    Article  PubMed  Google Scholar 

  • Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed Central  CAS  PubMed  Google Scholar 

  • Parales RE, Berry AM, Parales JV, Barabote RD (2014) Use of acidothermus cellulolyticus xylanase for hydrolyzing lignocellulose. US Patent No 08778649 B2

  • Petrosyan P, Luz-Madrigal A, Huitron C, Flores ME (2002) Characterization of a xylanolytic complex from Streptomyces sp. Biotechnol Lett 24:1473–1476

    Article  CAS  Google Scholar 

  • Pornwongthong P, Mulchandani A, Gedalanga PB, Mahendra S (2014) Transition metals and organic ligands influence biodegradation of 1,4-dioxane. Appl Biochem Biotechnol 173:291–306

    Article  CAS  PubMed  Google Scholar 

  • Sagova-Mareckova M, Cermak L, Novotna J, Plhackova K, Forstova J, Kopecky J (2008) Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl Environ Microbiol 74:2902–2907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmidt A, Haferburg G, Sineriz M, Merten D, Buchel G, Kothe E (2005) Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chem Erde-Geochem 65:131–144

    Article  CAS  Google Scholar 

  • Sheik CS, Mitchell TW, Rizvi FZ, Rehman Y, Faisal M, Hasnain S, McInerney MJ, Krumholz LR (2012) Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS One 7, e40059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shi ZJ, Cao Z, Qin D, Zhu WT, Wang Q, Li MS, Wang GJ (2013) Correlation models between environmental factors and bacterial resistance to antimony and copper. PLoS One 8:78533

    Article  Google Scholar 

  • So NW, Rho JY, Lee SY, Hancock IC, Kim JH (2001) A lead-absorbing protein with superoxide dismutase activity from Streptomyces subrutilus. FEMS Microbiol Lett 194:93–98

    Article  CAS  PubMed  Google Scholar 

  • Stach JEM, Maldonado LA, Ward AC, Goodfellow M, Bull AT (2003) New primers for the class Actinobacteria: application to marine and terrestrial environments. Environ Microbiol 5:828–841

    Article  CAS  PubMed  Google Scholar 

  • Steger K, Sjogren AM, Jarvis A, Jansson JK, Sundh I (2007) Development of compost maturity and Actinobacteria populations during full-scale composting of organic household waste. J Appl Microbiol 103:487–498

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Větrovský T, Baldrian P (2013a) Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol Fertil Soils 49:1027–1037

    Article  Google Scholar 

  • Větrovský T, Baldrian P (2013b) The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One 8:57923

    Article  Google Scholar 

  • Větrovský T, Steffen KT, Baldrian P (2014) Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLoS One 9:89108

    Article  Google Scholar 

  • Wang YX, Liu Q, Yan L, Gao YM, Wang YJ, Wang WD (2013) A novel lignin degradation bacterial consortium for efficient pulping. Bioresour Technol 139:113–119

    Article  CAS  PubMed  Google Scholar 

  • Wilmotte A, Vanderauwera G, Dewachter R (1993) Structure of the 16 S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (‘Mastigocladus laminosus HTF’) strain PCC7518, and phylogenetic analysis. FEBS Lett 317:96–100

    Article  CAS  PubMed  Google Scholar 

  • Yin LJ, Huang PS, Lin HH (2010) Isolation of cellulase-producing bacteria and characterization of the cellulase from the isolated bacterium Cellulomonas Sp YJ5. J Agric Food Chem 58:9833–9837

    Article  CAS  PubMed  Google Scholar 

  • Zelles L (1997) Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275–294

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Academy of Sciences of the Czech Republic (IAA603020901), by the Ministry of Education, Youth and Sports of the Czech Republic (LD12048, LD12050) and by the research concept of the Institute of Microbiology of the ASCR, v.v.i. (RVO61388971). This publication was also supported by the project ‘BIOCEV–Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University’

(CZ.1.05/1.1.00/02.0109) from the European Regional Development Fund. The authors are thankful to the anonymous reviewers and the editor of the manuscript whose comments helped to improve the content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Větrovský.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(PDF 73 kb)

Supplementary Table 1

(PDF 109 kb)

Supplementary Table 2

(PDF 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Větrovský, T., Baldrian, P. An in-depth analysis of actinobacterial communities shows their high diversity in grassland soils along a gradient of mixed heavy metal contamination. Biol Fertil Soils 51, 827–837 (2015). https://doi.org/10.1007/s00374-015-1029-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1029-9

Keywords

Navigation