Skip to main content
Log in

Wheat growth and yield responses to biochar addition under Mediterranean climate conditions

  • Special Issue
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The effects of the addition of a slow pyrolysis biochar (produced from olive-tree prunings) to a vertisol were studied in a field experiment during one wheat (Triticum durum L.) growing season. The biochar addition did not significantly affect soil parameters such as pH, dissolved organic C and N, ammonium, nitrate or microbial biomass N. By contrast, biochar addition decreased soil compaction and increased the soil water-retention capacity and nutrient content (total N and the available contents of P, K, Mg, Cu and Zn). These favourable changes led to an increase in fine root proliferation (increasing specific root length and reducing root tissue density) and promoted crop development. As a result, the plants in biochar-treated plots showed higher relative growth and net assimilation rates, aboveground biomass and yield than those in control plots. Neither grain quality nor nutrient content were significantly affected by biochar addition. Our results suggest that the use of biochar as a soil amendment in agricultural soils can improve soil physical properties and increase fertility, favouring crop development under semiarid Mediterranean conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alameda D, Villar R (2012) Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. seedlings under soil compaction conditions. Environ Exp Bot 79:49–57

    Article  Google Scholar 

  • Alburquerque JA, Salazar P, Barrón V, Torrent J, del Campillo MC, Gallardo A, Villar R (2013) Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agron Sustain Dev 33:475–484

    Article  CAS  Google Scholar 

  • Alburquerque JA, Calero JM, Barrón V, Torrent J, del Campillo MC, Gallardo A, Villar R (2014) Effects of biochars produced from different feedstocks on soil properties and sunflower growth. J Plant Nutr Soil Sci 177:16–25

    Article  Google Scholar 

  • Araus JL, Tapia L, Calafell R (1986) Ontogenetic changes in photosynthetic capacity and dry matter production of flag wheat leaves during the grain filling period. Photosynth Res 8:209–218

    Article  PubMed  CAS  Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 33:1–18

    Article  Google Scholar 

  • Baronti S, Alberti G, Delle Vedove G, Di Gennaro F, Fellet G, Genesio L, Miglietta F, Peressotti A, Primo Vaccari F (2010) The biochar option to improve plant yields: first results from some field and pot experiments in Italy. Ital J Agron 5:3–12

    Google Scholar 

  • Baronti S, Vaccari FP, Miglietta F, Calzolari C, Lugato E, Orlandini S, Pini R, Zulian C, Genesio L (2014) Impact of biochar application on plant water relations in Vitis vinífera (L.). Eur J Agron 53:38–44

    Article  CAS  Google Scholar 

  • Brockhoff SR, Christians NE, Killorn RJ, Horton R, Dedrick DD (2010) Physical and mineral–nutrition properties of sand-based turfgrass root zones amended with biochar. Agron J 12:1627–1631

    Article  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen; a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Chapin FS, Bloom AJ, Field CB, Waring RH (1987) Plant responses to multiple environmental factors. Bioscience 49–57

  • Clough TJ, Condron LM, Kammann C, Müller C (2013) A review of biochar and soil nitrogen dynamics. Agronomy 3:275–293

    Article  CAS  Google Scholar 

  • Crane-Droesch A, Abiven S, Jeffery S, Torn MS (2013) Heterogeneous global crop yield response to biochar: a meta-regression analysis. Environ Res Lett 8:044049

    Article  Google Scholar 

  • Deckers J, Spaargaren O, Nachtergaele F (2001) Vertisols: genesis, properties and soilscape management for sustainable development. The sustainable management of vertisols. CABI Publishing, UK

    Google Scholar 

  • Duchaufour P (1965) Precís de Pedologie. Masson, Paris

    Google Scholar 

  • Easson DL, Pickles SJ, White EM (1995) A study of the tensile force required to pull wheat roots from soil. Ann Appl Biol 127:363–373

    Article  Google Scholar 

  • EBC (2013) European biochar certificate, guidelines for a sustainable production of biochar, version 4.8 (13 December 2013); European Biochar Foundation (EBC), Arbaz, Switzerland. http://www.european-biochar.org/biochar/media/doc/ebc-guidelines.pdf. Accessed 26 Aug 2014

  • EEA (2010) The European environment state and outlook 2010: soil thematic assessment. European Environment Agency, Denmark

    Google Scholar 

  • Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. J Plant Nutr 15:763–782

    Article  Google Scholar 

  • Farrell M, Macdonald LM, Butler G, Chirino-Valle I, Condron LM (2014) Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biol Fertil Soils 50:169–178

    Article  CAS  Google Scholar 

  • Gaskin JW, Speir RA, Harris K, Das KC, Lee RD, Morris LA, Fisher DS (2010) Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J 102:623–633

    Article  CAS  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd edn, agronomy, 9. Soil Science Society of America, Madison, WI, pp 383–411

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal. A review. Biol Fertil Soils 35:219–230

    Article  CAS  Google Scholar 

  • Hesse PR (1971) A textbook of soil chemical analysis. John Murray, London

    Google Scholar 

  • Himmelbauer ML, Loiskandl W, Kastanek F (2004) Estimating length, average diameter and surface area of roots using two different image analysis systems. Plant Soil 260:111–120

    Article  CAS  Google Scholar 

  • Hunt R, Causton DR, Shipley B, Askew AP (2002) A modern tool for classical growth analysis. Ann Bot 90:485–488

    Article  PubMed  CAS  Google Scholar 

  • IPCC (2013) Working group I contribution to the IPCC fifth assessment report (AR5), climate change (2013), Intergovernmental panel on Climate Change. The Physical Science Basis, Stockholm

    Google Scholar 

  • Jeffery S, Bezemer TM, Cornelissen G, Kuyper TW, Lehmann J, Mommer L, Sohi SP, van de Voorde TFJ, Wardle DA, Van Groenigen JW (2014) The way forward in biochar research: targeting trade–offs between the potential wins. GCB Bioenergy (in press)

  • Kimetu JM, Lehmann J, Ngoze SO, Mugendi DN, Kinyangi JM, Riha S, Verchot L, Recha JW, Pell AN (2008) Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11:726–739

    Article  CAS  Google Scholar 

  • Laird D, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449

    Article  CAS  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (2008) Plant physiological ecology. Springer, New York

    Book  Google Scholar 

  • Lehmann J, da Silva JP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    Article  CAS  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizao FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

    Article  CAS  Google Scholar 

  • Makoto O, Yasuyuki O (2010) Pioneering works in biochar research, Japan. Aust J Soil Res 48:489–500

    Article  Google Scholar 

  • Mukherjee A, Lal R (2014) The biochar dilemma. Soil Res 52:217–230

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Olmo M, Lopez-Iglesias, B, Villar R (2014) Drought changes the structure and elemental composition of very fine roots in seedlings of ten woody tree species. Implications for a drier climate. Plant Soil (in press)

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeny RH (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties. Agron No 9, 2nd Edition, American Society of Agronomy, Madison, WI, pp 403–430

  • Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosyst 141:426–442

    Article  Google Scholar 

  • Prayogo C, Jones JE, Baeyens J, Bending GD (2014) Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol Fertil Soils 50:695–702

    Article  CAS  Google Scholar 

  • Prendergast-Miller MT, Duvall M, Sohi SP (2013) Biochar–root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur J Soil Sci 65:173–185

    Article  Google Scholar 

  • Qian L, Chen B, Hu D (2013) Effective alleviation of aluminum phytotoxicity by manure-derived biochar. Environ Sci Technol 47:2737–2745

    Article  PubMed  CAS  Google Scholar 

  • Quero JL, Villar R, Marañón T, Zamora R, Vega D, Sack L (2008) Relating leaf photosynthetic rate to whole-plant growth: drought and shade effects on seedlings of four Quercus species. Funct Plant Biol 35:725–737

    Article  Google Scholar 

  • Rawson HM, Gardner PA, Long MJ (1987) Sources of variation in specific leaf area in wheat grown at high temperature. Aust J Plant Physiol 14:287–298

    Article  Google Scholar 

  • Reich PB, Walters MB, Elsworth DS, Vose JM, Volin JC, Gresham C, Bowman WD (1998) Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114:471–482

    Article  Google Scholar 

  • Rhoades JD (1982) Cation exchange capacity. In: Page AL, Miller RH, Keeny RH (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties. Agron no. 9, 2nd edn, American Society of Agronomy, Madison, WI, pp 149–157

  • Rogovska N, Laird DA, Rathke SJ, Karlen DL (2014) Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma 230:340–347

    Article  Google Scholar 

  • Schmidt HP, Kammann C, Niggli C, Evangelou MW, Mackie KA, Abiven S (2014) Biochar and biochar-compost as soil amendments to a vineyard soil: influences on plant growth, nutrient uptake, plant health and grape quality. Agric Ecosyst Environ 191:117–123

    Article  CAS  Google Scholar 

  • Sims GK, Ellsworth TR, Mulvaney RL (1995) Microscale determination of inorganic nitrogen in water and soil extracts. Commun Soil Sci Plant Anal 26:303–316

    Article  CAS  Google Scholar 

  • Solis P, Torrent J (1989) Phosphate sorption by calcareous vertisols and inceptisols of Spain. Soil Sci Soc Am J 53:456–459

    Article  Google Scholar 

  • Song Y, Zhang X, Ma B, Chang SX, Gong J (2014) Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil. Biol Fertil Soils 50:321–332

    Article  CAS  Google Scholar 

  • Spinelli R, Picchi G (2010) Industrial harvesting of olive tree pruning residue for energy biomass. Bioresour Technol 101:730–735

    Article  PubMed  CAS  Google Scholar 

  • Tammeorg P, Simojoki A, Mäkelä P, Stoddard FL, Alakukku L, Helenius J (2014) Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand. Agric Ecosyst Environ 191:108–116

    Article  CAS  Google Scholar 

  • Toledano A, Serrano L, Labidi J (2012) Process for olive tree pruning lignin revalorisation. Chem Eng J 193:396–403

    Article  Google Scholar 

  • Vaccari FP, Baronti S, Lugato E, Genesio L, Castaldi S, Fornasier F, Miglietta F (2011) Biochar as a strategy to sequester carbon and increase yield in durum wheat. Eur J Agron 34:231–238

    Article  CAS  Google Scholar 

  • Villar R, Marañón T, Quero JL, Panadero P, Arenas F, Lambers H (2005) Variation in growth rate of 20 Aegilops species (Poaceae) in the field: the importance of net assimilation rate or specific leaf area depends on the time scale. Plant Soil 272:11–27

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed determination of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wang Y, Pan F, Wang G, Zhang G, Wang Y, Chen X, Mao Z (2014) Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions. Sci Hortic 175:9–15

    Article  CAS  Google Scholar 

  • Xu G, Wei LL, Sun JN, Shao HB, Chang SX (2013) What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: direct or indirect mechanism? Ecol Eng 52:119–124

    Article  Google Scholar 

  • Yang J, Zhang J (2006) Grain filling of cereals under soil drying. New Phytol 169:223–236

    Article  PubMed  CAS  Google Scholar 

  • Yuan JH, Xu RK (2011) The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manag 27:110–115

    Article  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Spanish ‘Ministerio de Ciencia e Innovación’ (Programa Nacional de Cooperación Público-Privada, Subprograma INNPACTO) and FEDER Funds ‘Fondo Europeo de Desarrollo Regional, una manera de hacer Europa’ in the framework of the project ‘Proyecto Biochar: Estudio del Biocarbón como Sumidero de Carbono’ (IPT-440000-2010-8). We thank J. Torrent for his comments aimed at improving the manuscript, J. Espejo (Valoriza Energía S.L.), M.E. Sánchez and her team (Instituto de Recursos Naturales, Universidad de León), J.A. Beltran and his team (Agrupación Cordobesa de Agricultores S.A.T. Córdoba), J.C. Moreno and his team (Encineño farm), F.M. Lopera, M.A. Rey, M. Castro and C. Allely for all their help in conducting the experiment and L. Gómez and A. Serrano from Zero Emissions Technologies S.A. for their contribution to the project development. The authors are also grateful to Dr. D.J. Walker for the English revision and to the anonymous reviewers and the Editor for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio Alburquerque.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 20 kb)

Fig. S1

(DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olmo, M., Alburquerque, J.A., Barrón, V. et al. Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biol Fertil Soils 50, 1177–1187 (2014). https://doi.org/10.1007/s00374-014-0959-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-014-0959-y

Keywords

Navigation