Skip to main content

Advertisement

Log in

Selective extraction of humic acids from an anthropogenic Amazonian dark earth and from a chemically oxidized charcoal

  • Special Issue
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Spectroscopic techniques including X-ray photoelectron spectroscopy (XPS) can identify particular chemical groups of humic acids (HA) from “Terra Preta de Índios” (TPI) or Amazonian dark earth, the highly fertile anthropogenic soil found in the Amazonian region. The high fertility and resilience of these soils cannot be explained by their chemically inert pyrogenic C content alone, but the natural aging of this C generates reactive carboxyl functional groups attached directly to the recalcitrant polycondensed aromatic backbone. Through spectroscopic techniques used in this work, the HA fraction (the alkaline-soluble organic matter that precipitates at low pH) of the TPI soil was compared with humic and fulvic acids, obtained by oxidizing activated charcoal with sodium hypochlorite. The yields recovery of HA-like substances was 12 and 28 wt% by using 10 and 20 cmol L−1 of oxidizing agent, respectively. X-ray photoelectron spectroscopy, energy dispersive X-ray, and solid-state 13C nuclear magnetic resonance (13C NMR) spectroscopies were used to evaluate the elements and structures present in all samples. XPS C 1 s spectra of HA extracted from TPI soil and from prepared HA showed aromatic structures (C = C and π–π* shake-up satellite peak) bounded to carboxyl groups (COOH). The morphology and polycondensation level of aromatic C were evaluated by scanning electron microscopy (SEM). The similarities of the spectra indicated that the used method was efficient to obtain an organic amendment similar to TPI soil organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arenella M, Giagnoni J, Masciandaro G, Ceccanti B, Nannipieri P, Renella G (2014) Interactions between proteins and humic substances affect protein identification by mass spectrometry. Biol Fertil Soils 50:447–454

    Article  CAS  Google Scholar 

  • Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2:581–587

    Article  PubMed  CAS  Google Scholar 

  • Brady N, Weil R (1999) Soil organic matter. In: The nature and properties of soils, Prentice-Hall, Inc, New Jersey

  • Brodowski S, John B, Flessa H, Amelung W (2006) Aggregate-occluded black carbon in soil. Eur J Soil Sci 57:539–546

    Article  Google Scholar 

  • Changlung C, Wang X, Jiang H, Hu E (2007) Direct observation of macromolecular structures of humic acid by AFM and SEM. Colloids Surf A 302:121–125

    Article  Google Scholar 

  • FAO World Reference Base for Soil Resources (2007), First update. Available at: http://www.fao.org/nr/land/soils/soil/wrb-documents/en/. Accessed 18 April 2014

  • Fiedler R, Herzschuc R (1993) An XPS investigation of the effects of heat treatment on the chlorine surface chemistry of some lignites. Fuel 72:1501–1505

    Article  CAS  Google Scholar 

  • Filik J, May PW, Pearce SRJ, Wild RK, Hallam HR (2003) XPS and laser Raman analysis of hydrogenated amorphous carbon films. Diamond Relat Mater 12:974–978

    Article  CAS  Google Scholar 

  • Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41

    Article  PubMed  CAS  Google Scholar 

  • Han HS, You JM, Jeong H, Jeon S (2013) Synthesis of graphene oxide grafted poly(lactic acid) with palladium nanoparticles and its application to serotonin sensing. Appl Surf Sci 284:438–445

    Article  CAS  Google Scholar 

  • Hayes MHB, Graham CL (2000) Procedures for the isolation and fractionation of humic substances. In: Ghabbour EA, Davies G (eds) Humic substances: versatile components of plants, soil and water. Royal Society of Chemistry, Cambridge, England, pp 91–109

    Chapter  Google Scholar 

  • Jorio A, Ribeiro-Soares J, Cançado L, Falcao NPS, Dos Santos HF, Baptista DL, Martins Ferreira EH, Archanjo BS, Achete CA (2012) Microscopy and spectroscopy analysis of carbon nanostructures in highly fertile Amazonian anthrosoils. Soil Tillage Res 122:61–66

    Article  Google Scholar 

  • Kogel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B, von Luetzow M (2008) An integrative approach of organic matter stabilization in temperate soils: linking chemistry, physics, and biology. J Plant Nutr Soil Sci 171:5–13

    Article  Google Scholar 

  • Kramer RW, Kujawinski EB, Hatcher PG (2004) Identification of black carbon derived structures in a volcanic ash soil humic acid by Fourier transform ion cyclotron resonance mass spectrometry. Environ Sci Technol 38:3387–3395

    Article  PubMed  CAS  Google Scholar 

  • Larciprete R, Lacovig P, Gardonio S, Baraldi A, Lizzit S (2012) Atomic oxygen on graphite: chemical characterization and thermal reduction. J Phys Chem 116:9900–9908

    Article  CAS  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    Article  PubMed  CAS  Google Scholar 

  • Lehmann J, Solomon D, Kinyangi J, Dathe L, Wirick S, Jacobsen C (2008) Spatial complexity of soil organic matter forms at nanometre scales. Nat Geosci 1:238–242

    Article  CAS  Google Scholar 

  • Linhares CR, Lemke J, Auccaise R, Duo DA, Ziolli RL, Kwapinski W, Novotny EH (2012) Reproducing the organic matter model of anthropogenic dark earth of Amazonia and testing the ecotoxicity of functionalized charcoal compounds. Pesq Agropec Bras 47:693–698

    Article  Google Scholar 

  • Mao JD, Johnson RL, Lehmann J, Olk DC, Neves EG, Thompson ML, Schmidt-Rohr K (2012) Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration. Environ Sci Technol 46:9571–9576

    Article  PubMed  CAS  Google Scholar 

  • Marris E (2006) Black is the new green. Nature 442:626–628

    Google Scholar 

  • Masiello CA (2004) New directions in black carbon organic geochemistry. Mar Chem 92:201–213

    Article  CAS  Google Scholar 

  • Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Func Mater 19:2577–2583

    Article  CAS  Google Scholar 

  • Novotny EH, Deazevedo ER, Bonagamba TJ, Cunha TJF, Madari BE, Benites VD, Hayes MHB (2007) Studies of the compositions of humic acids from Amazonian dark earth soils. Environ Sci Technol 41:400–405

    Article  PubMed  CAS  Google Scholar 

  • Novotny EH, Hayes MHB, Madari BE, Bonagamba TJ, de Azevedo ER, de Souza AA, Song G, Nogueira CM, Magrich AS (2009) Lessons from the Terra Preta de Índios of the Amazon region for the utilisation of charcoal for soil amendment. J Braz Chem Soc 20:1003–1010

    Article  CAS  Google Scholar 

  • Oades JM (1988) The retention of organic matter in soils. Biogeochemistry 5:35–70

    Article  CAS  Google Scholar 

  • Pandey AK, Pandey SD, Misra V (2000) Stability constants of metal-humic acid complexes and its role in environmental detoxification. Ecotoxicol Environ Saf 47:195–200

    Article  PubMed  CAS  Google Scholar 

  • Papirer E, Lacroix R, Donnet JB, Nansé G, Fioux P (1995) XPS study of the halogenations of carbon black—part 2. Chlorination Carbon 33:63–72

    CAS  Google Scholar 

  • Pérez-Cadenas AF, Hódar FJM, Moreno-Castilla C (2003) On the nature of surface acid sites of chlorinated activated carbons. Carbon 41:473–478

    Article  Google Scholar 

  • Powell CJ, Jablonski A (2010) Progress in quantitative surface analysis by X-ray photoelectron spectroscopy: current status and perspectives. J Electron Spectrosc Relat Phenom 178–179:331–346

    Article  Google Scholar 

  • Schimel DS, Braswell BH, Holland EA, McKeown R, Ojima DS, Painter TH, Parton WJ, Townsend AR (1994) Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochem Cycles 8:279–293

    Article  CAS  Google Scholar 

  • Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem Cycles 14:777–794

    Article  CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  PubMed  CAS  Google Scholar 

  • Simpson AJ, Song G, Smith E, Lam B, Novotny EH, Hayes MHB (2007) Unraveling the structural components of soil humin by use of solution-state nuclear magnetic resonance spectroscopy. Environ Sci Technol 41:876–883

    Article  PubMed  CAS  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176

    Article  CAS  Google Scholar 

  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  • Swift RS (1996) Organic matter characterization. In: Sparks DL (ed) Methods of soil analysis, part 3, chemical methods. Soil Science Society of America, Madison, WI, pp 1018–1020

    Google Scholar 

  • Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389:170–173

    Article  CAS  Google Scholar 

  • Wang DW, Wu KH, Gentle IR, Lu GQ (2012) Anodic chlorine/nitrogen co-doping of reduced graphene oxide films at room temperature. Carbon 50:3333–3341

    Article  CAS  Google Scholar 

  • Xu D, Zhu S, Chen H, Li F (2006) Structural characterization of humic acids isolated from typical soils in China and their adsorption characteristics to phenanthrene. Colloids Surf A 276:1–7

    Article  CAS  Google Scholar 

  • Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA, Ruoff RS (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47:145–152

    Article  CAS  Google Scholar 

  • Zhang J, Dai J, Wang R, Li F, Wang W (2009) Adsorption and desorption of divalent mercury (Hg2+) on humic acids and fulvic acids extracted from typical soils in China. Colloids Surf A 335:194–201

    Article  CAS  Google Scholar 

  • Zhu Y, Tang J, Zhu W, Zhang M, Liu G, Liu Y, Zhang W, Jia M (2011) Graphite oxide-supported CaO catalysts for transesterification of soybean oil with methanol. Bioresour Technol 102:8939–8944

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Austim M. Pimenta and Carlos Senna for the EDS measurements. Katia R. de Souza thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the research fellowship (384692/2012-5) supporting her research.

Conflict of interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyce R. Araujo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, J.R., Archanjo, B.S., de Souza, K.R. et al. Selective extraction of humic acids from an anthropogenic Amazonian dark earth and from a chemically oxidized charcoal. Biol Fertil Soils 50, 1223–1232 (2014). https://doi.org/10.1007/s00374-014-0940-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-014-0940-9

Keywords

Navigation