Skip to main content
Log in

Interactions between proteins and humic substances affect protein identification by mass spectrometry

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Soil proteomics is facing problems such as low yields of protein extraction from soil and low protein identification rates as compared to theoretical estimates of soil proteome. This work aimed to evaluate the effect of soil-borne humic substances (HS) on the identification of model proteins with different properties, such as myoglobin (Mb), α-glucosidase (αG), and β-glucosidase (βG), by using electrophoretic and ESI- and MALDI-mass spectrometry (MS) methodologies. Results showed that the contact between proteins and HS did not alter protein electrophoretic mobility but led to protein modifications that affected protein identification by MS. The decrease in protein identification parameters was more evident for Mb than for αG and βG, probably due to its lower molecular weight and less complex molecular structure. Analysis of MS data indicated that hydrophobic interactions could be responsible for the observed effects of contact between proteins and HS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 13:198–207

    Article  Google Scholar 

  • Bremner JM (1951) A review of recent work on soil organic matter. J Soil Sci 2:67–82

    Article  Google Scholar 

  • Calamai L, Lozzi I, Ristori GG, Fusi P, Stotzky G (2000) Interaction of catalase with montmorillonite homoionic to cations with different hydrophobicity: effect on bound enzyme activity. Soil Biol Biochem 32:815–823

    Article  CAS  Google Scholar 

  • Chourey K, Jansson J, VerBerkmoes N, Shah M, Chavarria KL, Tom LM, Brodie EL, Hettich RL (2010) Direct cellular lysis/protein extraction protocol for soil metaproteomics. J Proteome Res 9:6615–6622

    Article  CAS  PubMed  Google Scholar 

  • Dani FR, Michelucci E, Francese S, Mastrobuoni G, Cappellozza S, La Marca G, Niccolini A, Felicioli A, Moneti G, Pelosi P (2011) Odorant-binding proteins and chemosensory proteins in pheromone detection and release in the Silkmoth Bombyx mori. Chem Senses 36:335–344

    Article  CAS  PubMed  Google Scholar 

  • Daniel JM, Friess SD, Rajagopalan S, Wendt S, Zenobi R (2002) Quantitative determination of noncovalent binding interactions using soft ionization mass spectrometry. Int J Mass Spectrom 216:1–27

    Article  CAS  Google Scholar 

  • De Kruif CG, Weinbreck F, De Vries R (2004) Complex coacervation of proteins and anionic polysaccharides. Curr Opin Colloid Interface Sci 9:340–349

    Article  Google Scholar 

  • Deutsch EW, Mendoza L, Shteynberg D, Farrah T, Lam H, Tasman N, Sun Z, Nilsson E, Pratt B, Prazen B, Martin L, Nesvizhskii AI, Aebersold R (2010) A guided tour of the Trans-Proteomic Pipeline. Proteomics 10:1150–1159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ding F, Diao JX, Yang XL, Sun Y (2011) Structural analysis and binding domain of albumin complexes with natural dietary supplement humic acid. J Lumin 131:2244–2251

    Article  CAS  Google Scholar 

  • Giagnoni L, Magherini F, Landi L, Taghavi S, Modesti A, Bini L, Nannipieri P, Van der Lelie D, Renella G (2011) Extraction of microbial proteome from soil: potential and limitations assessed through a model study. Eur J Soil Sci 62:74–81

    Article  CAS  Google Scholar 

  • Giagnoni L, Magherini F, Landi L, Taghavi S, Van der Lelie D, Puglia M, Bianchi L, Bini L, Nannipieri P, Renella G, Modesti A (2012) Soil solid phases effects on the proteomic analysis of Cupriavidus metallidurans CH34. Biol Fertil Soils 48:425–433

    Article  CAS  Google Scholar 

  • Haynes CA, Norde WJ (1995) Structures and stabilities of adsorbed proteins. J Colloid Interface Sci 169:313–328

    Article  CAS  Google Scholar 

  • Hsu PH, Hatcher PG (2005) New evidence for covalent coupling of peptides to humic acids based on 2D NMR spectroscopy: a means for preservation. Geochim Cosmochim Acta 69:4521–4533

    Article  CAS  Google Scholar 

  • Keller M, Hettich R (2009) Environmental proteomics: a paradigm shift in characterizing microbial activities at the molecular level. Microbiol Mol Biol Rev 73:62–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim KH, Brown KM, Harris PV, Langston JA, Cherry JR (2007) A proteomics strategy to discover β-glucosidases from Aspergillus fumigatus with two-dimensional page in-gel activity assay and tandem mass spectrometry. J Proteome Res 6:4749–4757

    Article  CAS  PubMed  Google Scholar 

  • Krause F (2006) Detection and analysis of protein–protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (membrane) protein complexes and supercomplexes. Electrophoresis 27:2759–2781

    Article  CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle RA (1982) Simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 15:680–685

    Article  Google Scholar 

  • Li XJ, Pedrioli PA, Eng J, Martin D, Yi EC, Lee H, Aebersold RA (2004) Tool to visualize and evaluate data obtained by liquid chromatography-electrospray ionization-mass spectrometry. Anal Chem 76:3856–3860

    Article  CAS  PubMed  Google Scholar 

  • Mayaudon J (1986) The role of carbohydrates in the free enzymes in soil. In: Fuschman CH (ed) Peat and water. Elsevier, London, pp 263–309

    Google Scholar 

  • Nannipieri P (2006) Role of stabilized enzymes in microbial ecology and enzyme extraction from soil with potential applications in nucleic acids and proteins in soils. In: Smalla K, Nannipieri P (eds) Nucleic acids and proteins in soil. Soil Biology, Springer, Berlin, pp 75–94

  • Nannipieri P, Sequi P, Fusi P (1996) Humus and enzyme activity. In: Piccolo A (ed) Humic substances in terrestrial ecosystem. Elsevier, Amsterdam, pp 293–323

    Chapter  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nebbioso A, Piccolo A, Spiteller M (2010) Limitations of electrospray ionization in the analysis of a heterogeneous mixture of naturally occurring hydrophilic and hydrophobic compounds. Rapid Commun Mass Spectrom 24:3163–3170

    Article  CAS  PubMed  Google Scholar 

  • Norde W (1996) Driving forces for protein adsorption at solid surfaces. Macromol Symp 103:5–18

    Article  CAS  Google Scholar 

  • Ogawa M, Nishio T, Minoura K, Uozumi T, Wada M, Hashimoto N, Kawachi R, Oku T (2006) Physical and kinetic properties of the family 3 beta-glucosidase from Aspergillus niger which is important for cellulose breakdown. J Appl Glycosci 53:13–16

    Article  CAS  Google Scholar 

  • Perkins DN, Pappin DJC, Creasy DM, Cottrel JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  PubMed  Google Scholar 

  • Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–832

    Article  CAS  Google Scholar 

  • Pramanik BN, Bartner PL, Mirza UA, Liu YH, Ganguly AK (1998) Electrospray ionization mass spectrometry for the study of non-covalent complexes: an emerging technology. J Mass Spectrom 33:911–920

    Article  CAS  PubMed  Google Scholar 

  • Preston GW, Radford SE, Ashcroft AE, Wilson A (2012) Covalent cross-linking within supramolecular peptide structures. Anal Chem 84:6790–6797

    Article  CAS  PubMed  Google Scholar 

  • Quiquampoix H, Ratcliffe RG (1992) A 31P NMR study of the adsorption of bovine serum albumin on montmorillonite using phosphate and the paramagnetic cation Mn2+: modification of conformation with pH. J Colloid Interface Sci 148:343–352

    Article  CAS  Google Scholar 

  • Renella G, Landi L, Nannipieri P (2002) Hydrolase activity during and after the chloroform fumigation of soils as affected by protease activity. Soil Biol Biochem 34:51–60

    Article  CAS  Google Scholar 

  • Renella G, Giagnoni L, Arenella M, Nannipieri P (2014) Soil proteomics. In: Nannipieri P, Pietramellara G, Renella G (eds) Omics in soil science. Horizon Scientific and Caister Academic, Norwich, in press

  • Revault M, Quiquampoix H, Baron MH, Noinville S (2005) Fate of prions in soil: trapped conformation of full-length ovine prion protein induced by adsorption on clays. BBA-Gen Subj 1724:367–374

    Article  CAS  Google Scholar 

  • Schulze WH, Gleixner G, Kaiser K, Guggenberger G, Mann M, Schulze ED (2005) A proteomic fingerprint of dissolved organic carbon and soil particles. Oecologia 142:335–343

    Article  PubMed  Google Scholar 

  • Swift RG (1996) Organic matter characterization. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Summer ME (eds) Methods of soil analysis. Part 3. Chemical methods. American Society of Agronomy, Soil Science Society of America, Madison, pp 1011–1069

    Google Scholar 

  • Tan WF, Koopal LK, Weng LP, van Riemsdijk WH, Norde W (2008) Humic acid protein complexation. Geochim Cosmochim Acta 72:2090–2099

    Article  CAS  Google Scholar 

  • Tomaszewski JE, Schwarzenbach RP, Sander M (2011) Protein encapsulation by humic substances. Environ Sci Technol 45:6003–6010

    Article  CAS  PubMed  Google Scholar 

  • Wang H-B, Zhang Z-X, Li H, He H-B, Fang C-X, Zhang A-J, Li Q-S, Chen R-S, Guo X-K, Lin H-F, Wu L-K, Lin S, Chen T, Lin R-Y, Peng X-X, Lin W-X (2011) Characterization of metaproteomics in crop rhizospheric soil. J Proteome Res 10:932–940

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Wang H, Zhang Z, Lin R, Zhang Z, Lin W (2011) Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil. Plos One 6:e20611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zang X, van Heemst JDH, Dria KJ, Hatcher PG (2000) Encapsulation of protein in humic acid from a histosol as an explanation for the occurrence of organic nitrogen in soil and sediment. Org Geochem 31:679–695

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Department of Agrifood Production and Environmental Sciences of the University of Florence receives grant-aided support from the Ente Cassa di Risparmio di Firenze for research in soil proteomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariarita Arenella.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(DOC 210 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arenella, M., Giagnoni, L., Masciandaro, G. et al. Interactions between proteins and humic substances affect protein identification by mass spectrometry. Biol Fertil Soils 50, 447–454 (2014). https://doi.org/10.1007/s00374-013-0860-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-013-0860-0

Keywords

Navigation