Skip to main content
Log in

Influence of difloxacin-contaminated manure on microbial community structure and function in soils

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Difloxacin (DIF) belongs to the fluoroquinolones, a frequently detected group of antibiotics in the environment. It is excreted in pig manure to a large extent and may consequently reach soils in potentially effective concentrations via manuring. The aim of this study was to assess the effects of DIF-spiked manure on microbial communities and selected functions in soils in a microcosm experiment up to 1 month after application. To test a dose dependency of the effects, three different concentrations of DIF (1, 10 and 100 mg/kg of soil) were used. Microcosms with application of pure manure, as well as untreated microcosms served as control. The addition of pure manure resulted in an increase of microbial biomass and soil respiration as well as a reduced bacteria/fungi ratio. Due to the fast and strong immobilisation of DIF, effects of the antbiotic compound were only visible up to 8 days after application (microbial biomass; respiration; potential denitrification; ratio of bacteria/fungi). As expected these short-term effects resulted in reduced potential denitrification rates as well as a reduced bacteria/fungal ratio in the treatments were DIF has been applied. Surprisingly, microbial biomass values as well as respiration rates were increased by DIF application. Other parameters like nitrate and ammonium content in soil were not influenced by DIF application at any time point. Long-term effects (32 days after application) were only visible for the potential nitrification rates. For those parameters that were influenced by the DIF application a clear dose dependency could not be described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Avrahami S, Conrad R, Braker G (2002) Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers. Appl Environ Microbiol 68:5685–5692

    Article  CAS  PubMed  Google Scholar 

  • Bailey VL, Smith JL, Bolton H (2003) Novel antibiotics as inhibitors for the selective respiratory inhibition method of measuring fungal: bacterial ratios in soil. Biol Fertil Soils 38:154–160

    Article  CAS  Google Scholar 

  • Bardgett RD, Hobbs PJ, Frostegård Å (1996) Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol Fertil Soils 22:261–264

    Article  Google Scholar 

  • Boxall ABA, Kolpin DW, Halling-Sorensen B, Tolls J (2003) Are veterinary medicines causing environmental risks? Environ Sci Technol 37:286A–294A

    Article  CAS  PubMed  Google Scholar 

  • Boxall ABA, Fogg LA, Blackwell PA, Kay P, Pemberton EJ, Croxford A (2004) Veterinary medicines in the environment. Rev Environ Contam Toxicol 180:1–91

    Article  CAS  PubMed  Google Scholar 

  • Córdova-Kreylos AL, Scow KM (2007) Effects of ciprofloxacin on salt marsh sediment microbial communities. ISME J 1:585–595

    Article  PubMed  Google Scholar 

  • Drlica K, Zhao X (1997) DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61:377–392

    CAS  PubMed  Google Scholar 

  • Eliopoulos GM, Moellering AE, Reiszner E, Moellering RC Jr (1985) In vitro activities of the quinolone antimicrobial agents A-56619 and A-56620. Antimicrob Agents Chemother 28:514–520. doi:10.1128/aac

    CAS  PubMed  Google Scholar 

  • Federle TW (1986) Microbial distribution in soil. In: Megusar F, Ganatar M (eds) Perspectives in microbial ecology. Slovene Society for Microbiology, Ljubljana, pp 493–498

    Google Scholar 

  • Fernandez-Varon E, Carceles CM, Marin P, Martos N, Escudero E, Ayala I (2006) Pharmacokinetics of difloxacin after intravenous, intramuscular, and intragastric administration to horses. Am J Vet Res 67:1076–1081

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Varon E, Carceles CM, Marin P, Vancraeynest D, Montes A, Sotillo J, Garcia-Martinez JD (2008) Disposition kinetics and pharmacokinetics-pharmacodynamic integration of difloxacin against Staphylococcus aureus isolates from rabbits. Res Vet Sci 84:90–94

    Article  CAS  PubMed  Google Scholar 

  • Förster M, Laabs V, Lamshoft M, Groeneweg J, Zuhlke S, Spiteller M, Krauss M, Kaupenjohann M, Amelung W (2009) Sequestration of manure-applied sulfadiazine residues in soils. Environ Sci Technol 43:1824–1830

    Article  PubMed  Google Scholar 

  • Frostegård Å, Bååth E, Tunlio A (1993) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25:723–730

    Article  Google Scholar 

  • Grayston SJ, Campbell CD, Bardgett RD, Mawdsley JL, Clegg CD, Ritz K, Griffiths BS, Rodwell JS, Edwards SJ, Davies WJ, Elston DJ, Millard P (2004) Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Appl Soil Ecol 25:63–84

    Article  Google Scholar 

  • Halling-Sørensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lützhøft CH, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36:357–393

    Article  PubMed  Google Scholar 

  • Halling-Sørensen B, Sengeløv G, Ingerslev F, Jensen LB (2003) Reduced antimicrobial potencies of oxytetracycline, tylosin, sulfadiazin, streptomycin, ciprofloxacin, and olaquindox due to environmental processes. Arch Environ Contam Toxicol 44:7–16

    Article  PubMed  Google Scholar 

  • Hammesfahr U, Thiele-Bruhn S, Manzke B, Heuer H, Smalla K (2008) Effects of sulfadiazine and pig slurry on the structural diversity of soil microorganisms. Soil Biol Biochem 40:1583–1591

    Article  CAS  Google Scholar 

  • Hamscher G, Sczesny S, Hoper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74:1509–1518

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann H, Schloter M, Wilke BM (2007) Gradients of potential nitrification rates in soil aggregates. Biol Fertil Soils 44:411–413

    Article  Google Scholar 

  • Hooper DC, Wolfson JS (1993) Mechanism of quinolone action and bacterial killing. In: Hooper DC, Wolfson JS (eds) Quinolone antimicrobial agents, vol 4. American Society for Microbiology, Washington, DC, pp 53–75

    Google Scholar 

  • Joergensen RG, Emmerling C (2006) Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. J Plant Nutr Soil Sci 169:295–309

    Article  CAS  Google Scholar 

  • Karl W, Schneider J, Wetzstein HG (2006) Outlines of an “exploding” network of metabolites generated from the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum. Appl Microbiol Biotechnol 71:101–113

    Article  CAS  PubMed  Google Scholar 

  • Kotzerke A, Sharma S, Schauss K, Heuer H, Thiele-Bruhn S, Smalla K, Wilke BM, Schloter M (2008) Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environ Pollut 153:315–322

    Article  CAS  PubMed  Google Scholar 

  • Kotzerke A, Fulle M, Sharma S, Kleineidam K, Welzl G, Lamshöft M, Schloter M, Wilke B-M (2010a) Alterations in total microbial activity and nitrification rates in soil due to amoxicillin-spiked pig manure. J Plant Nutr Soil Sci. doi:10.1002/jpln.200900210

    Google Scholar 

  • Kotzerke A, Klemer S, Kleineidam K, Horn M, Drake H, Schloter M, Wilke B-M (2010b) Manure contaminated with the antibiotic sulfadiazine impairs the abundance of nirK- and nirS-type denitrifiers in the gut of the earthworm Eisenia fetida. Biol Fertil Soils 46:415–418

    Article  Google Scholar 

  • Kümmerer K (2003) Significance of antibiotics in the environment. J Antimicrob Chemother 52:317–317

    Article  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  CAS  PubMed  Google Scholar 

  • Lindberg RH, Bjorklund K, Rendahl P, Johansson MI, Tysklind M, Andersson BAV (2007) Environmental risk assessment of antibiotics in the Swedish environment with emphasis on sewage treatment plants. Water Res 41:613–619

    Article  CAS  PubMed  Google Scholar 

  • Marin P, Escudero E, Fernandez-Varon E, Carceles CM (2007a) Pharmacokinetics and milk penetration of difloxacin after intravenous, subcutaneous and intramuscular administration to lactating goats. J Vet Pharmacol Ther 30:74–79

    Article  CAS  PubMed  Google Scholar 

  • Marin P, Fernandez-Varon E, Escudero E, Carceles CM (2007b) Pharmacokinetics after intravenous, intramuscular and subcutaneous administration of difloxacin in sheep. Res Vet Sci 83:234–238

    Article  CAS  PubMed  Google Scholar 

  • Palmborg C, Nordgren A (1993a) Soil respiration curves, a method to test the influence of chemicals and heavy metals on the abundance, activity and vitality of the microflora in forest soils. In: Torstensson L (ed) MATS guidelines: soil biological variables in environmental hazard assessment. Swedish Environmental Protection Agency, Uppsala, pp 157–166

    Google Scholar 

  • Palmborg C, Nordgren A (1993b) Soil respiration curves, a method to test the abundance, activity and vitality of the microflora in forest soils. In: Torstensson L (ed) MATS guidelines: soil biological variables in environmental hazard assessment. Swedish Environmental Protection Agency, Uppsala, pp 149–156

    Google Scholar 

  • Picó Y, Andreu V (2007) Fluoroquinolones in soil—risks and challenges. Anal Bioanal Chem 387:1287–1299

    Article  PubMed  Google Scholar 

  • Prabhakaran D, Sukul P, Lamshöft M, Maheswari MA, Zühlke S, Spiteller M (2009) Photolysis of difloxacin and sarafloxacin in aqueous systems. Chemosphere 77:739–746

    Article  CAS  PubMed  Google Scholar 

  • Ryden JC, Lund LJ, Focht DD (1979) Direct measurement of denitrification loss from soils: I Laboratory evaluation of acetylene inhibition of nitrous-oxide reduction. Soil Sci Soc Am J 43:104–110

    Article  CAS  Google Scholar 

  • Schauss K, Focks A, Leininger S, Kotzerke A, Heuer H, Thiele-Bruhn S, Sharma S, Wilke BM, Matthies M, Smalla K, Munch JC, Amelung W, Kaupenjohann M, Schloter M, Schleper C (2009) Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environ Microbiol 11:446–456

    Article  CAS  PubMed  Google Scholar 

  • Schmitt H, Haapakangas H, van Beelen P (2005) Effects of antibiotics on soil microorganisms: time and nutrients influence pollution-induced community tolerance. Soil Biol Biochem 37:1882–1892

    Article  CAS  Google Scholar 

  • Schwarz S, Chaslus-Dancla E (2001) Use of antimicrobials in veterinary medicine and mechanisms of resistance. Vet Res 32:201–225

    Article  CAS  PubMed  Google Scholar 

  • Sczesny S, Nau H, Hamscher G (2003) Residue analysis of Tetracyclines and their metabolites in eggs and in the environment by HPLC coupled with a microbiological assay and tandem mass spectrometry. J Agric Food Chem 51:697–703

    Article  CAS  PubMed  Google Scholar 

  • Siemens J, Kaupenjohann M (2002) Contribution of dissolved organic nitrogen to N leaching from four German agricultural soils. J Plant Nutr Soil Sci 165:675–681

    Article  CAS  Google Scholar 

  • Stamm JM, Hanson CW, Chu DT, Bailer R, Vojtko C, Fernandes PB (1986) In vitro evaluation of A-56619 (difloxacin) and A-56620: new aryl-fluoroquinolones. Antimicrob Agents Chemother 29:193–200. doi:10.1128/aac

    CAS  PubMed  Google Scholar 

  • Stenström J, Svensson K, Johansson M (2001) Reversible transition between active and dormant microbial states in soi. FEMS Microbiol Ecol 36:93–104

    PubMed  Google Scholar 

  • Sukul P, Lamshoft M, Kusari S, Zuhlke S, Spiteller M (2009) Metabolism and excretion kinetics of C-14-labeled and non-labeled difloxacin in pigs after oral administration, and antimicrobial activity of manure containing difloxacin and its metabolites. Environ Res 109:225–231

    Article  CAS  PubMed  Google Scholar 

  • Thiele-Bruhn S, Aust MO (2004) Effects of pig slurry on the sorption of sulfonamide antibiotics in soil. Arch Environ Contam Toxicol 47:31–39

    Article  CAS  PubMed  Google Scholar 

  • Thiele-Bruhn S, Beck IC (2005) Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 59:457–465

    Article  CAS  PubMed  Google Scholar 

  • Walker RD (2000) Fluoroquinolones. In: Prescott JF, Baggot JD, Walker RD (eds) Antimicrobial therapy in veterinary medicine, 3rd edn. Iowa State University Press, Ames, pp 315–338

    Google Scholar 

  • Wetzstein HG, Schneider J, Karl W (2006) Patterns of metabolites produced from the fluoroquinolone enrofloxacin by basidiomycetes indigenous to agricultural sites. Appl Microbiol Biotechnol 71:90–100

    Article  CAS  PubMed  Google Scholar 

  • Zielezny Y, Groeneweg J, Vereecken H, Tappe W (2006) Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity. Soil Biol Biochem 38:2372–2380

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the skilled technical assistance of Birgit Fischer, Ruth See, Reinhild Schwartengräber and Maike Mai. Financial support was provided by Deutsche Forschungsgemeinschaft. This paper represents a contribution to the DFG-Forschergruppe 566: Veterinary Medicines in Soils: Basic Research for Risk Analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Kotzerke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotzerke, A., Hammesfahr, U., Kleineidam, K. et al. Influence of difloxacin-contaminated manure on microbial community structure and function in soils. Biol Fertil Soils 47, 177–186 (2011). https://doi.org/10.1007/s00374-010-0517-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-010-0517-1

Keywords

Navigation