Skip to main content
Log in

Plant canopy effects on litter accumulation and soil microbial biomass in two temperate forests

  • Short Communication
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The objective of this study was to determine whether differences in canopy structure and litter composition affect soil characteristics and microbial activity in oak versus mixed fir-beech stands. Mean litter biomass was greater in mixed fir-beech stands (51.9t ha−1) compared to oak stands (15.7t ha−1). Canopy leaf area was also significantly larger in mixed stands (1.96m2 m−2) than in oak stands (1.73m2 m−2). Soil organic carbon (C org) and moisture were greater in mixed fir-beech stands, probably as a result of increased cover. Soil microbial biomass carbon (C mic), nitrogen (N mic), and total soil nitrogen (N tot) increased slightly in the mixed stand, although this difference was not significant. Overall, mixed stands showed a higher mean C org/N tot ratio (22.73) compared to oak stands (16.39), indicating relatively low rate of carbon mineralization. In addition, the percentage of organic C present as C mic in the surface soil decreased from 3.17% in the oak stand to 2.26% in the mixed stand, suggesting that fir-beech litter may be less suitable as a microbial substrate than oak litter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Anderson TH, Domsch KH (1989) Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol Biochem 21:471–479 doi:10.1016/0038-0717(89)90117-X

    Article  Google Scholar 

  • Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility: a handbook of methods, 2nd edn. CAB International, Wallingford, UK

    Google Scholar 

  • Augusto L, Ranger J (2001) Impact of tree species on soil solutions in acidic conditions. Ann Sci 58:47–58 doi:10.1051/forest:2001102

    Article  Google Scholar 

  • Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forest on soil fertility. Ann Sci 59:233–253 doi:10.1051/forest:2002020

    Article  Google Scholar 

  • Aussenac G (2000) Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture. Ann Sci 57:287–301 doi:10.1051/forest:2000119

    Article  Google Scholar 

  • Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manag 133:13–22

    Article  Google Scholar 

  • Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5:1–25 doi:10.1139/er-5–1–1

    Article  CAS  Google Scholar 

  • Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 19:269–279 doi:10.1007/BF00336094

    Article  CAS  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and release of soil nitrogen; a rapid extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842 doi:10.1016/0038-0717(85)90144-0

    Article  CAS  Google Scholar 

  • Cavigelli MA, Lengnick LL, Buyer JS, Fravel D, Handoo Z, McCarty G et al (2005) Landscape level variation in soil resources and microbial properties in a no-till corn field. Appl Soil Ecol 29:99–123 doi:10.1016/j.apsoil.2004.12.007

    Article  Google Scholar 

  • Dong X, Yao H, Yand Huang CY (2006) Microbial biomass, N mineralization and nitrification, enzyme activities, and microbial community diversity in tea orchard soils. Plant Soil 288:319–331 doi:10.1007/s11104-006-9009-3

    Article  Google Scholar 

  • Hopkins DW, Badalucco L, English LC, Meli SM, Chudek JA, Ioppolo A (2008) Plant litter decomposition and microbial characteristics in volcanic soils (Mt Etna, Sicily) at different stages of development. Biol Fertil Soils 43:461–469 doi:10.1007/s00374-006-0124-3

    Article  Google Scholar 

  • Innes JC, Ducey MJ, Gove JH, Leak WB, Barrett JP (2005) Size and density metrics, leaf area, and productivity in eastern white pine. Can J Res 35:2469–2478 doi:10.1139/x05-174

    Article  Google Scholar 

  • Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag 140:227–238

    Article  Google Scholar 

  • Kara Ö, Bolat İ (2008) Soil microbial biomass C and N changes in relation to forest conversion in the northwestern Turkey. Land Degrad Dev 19:421–428 doi:10.1002/ldr.850

    Article  Google Scholar 

  • Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139–143 doi:10.1016/S0169-5347(97)01001-X

    Article  Google Scholar 

  • Kennedy AC, Papendick RI (1995) Microbial characteristics of soil quality. J Soil Water Conserv 50:243–248

    Google Scholar 

  • Kraus TEC, Dahlgren RA, Zasoski RJZ (2003) Tannins in nutrient dynamics of forest ecosystems-a review. Plant Soil 256:41–66 doi:10.1023/A:1026206511084

    Article  CAS  Google Scholar 

  • Lorenz K, Preston CM, Raspe S, Morrison IK, Feger KH (2000) Litter decomposition and humus characteristics in Canadian and German spruce ecosystems: information from tannin analysis and 13C CPMAS NMR. Soil Biol Biochem 32:779–792 doi:10.1016/S0038-0717(99)00201-1

    Article  CAS  Google Scholar 

  • Nys C, Bullock P, Nys A (1987) Micromorphological and physical properties of a soil under three different species of trees. In: Proceeding of the VIIth international working meeting on soil micromorphology (Paris, July 1985), pp 459–464

  • Pandey RR, Sharma G, Tripathi SK, Singh AK (2007) Litterfall, litter decomposition and nutrient dynamics in a subtropical natural oak forest and managed plantation in northeastern India. For Ecol Manag 240:96–104

    Article  Google Scholar 

  • Polyakova O, Billor N (2007) Impact of deciduous trees species on litterfall quality, decomposition rates and nutrient circulation in pine stands. For Ecol Manag 253:11–18

    Article  Google Scholar 

  • Raulund-Rasmussen K, Vejre H (1995) Effect of tree species and soil properties on nutrient immobilization in the forest floor. Plant Soil 168–169:345–352 doi:10.1007/BF00029347

    Article  Google Scholar 

  • Rowell DL (1994) Soil science methods and applications. Longman Scientific and Technical, Singapore

    Google Scholar 

  • Running SW, Coughlan JC (1988) A general model of forest ecosystem processes for regional applications. 1. Hydrologic balance, canopy gas-exchange and primary production processes. Ecol Modell 42:125–154 doi:10.1016/0304-3800(88)90112-3

    Article  CAS  Google Scholar 

  • Russell AE, Raich JW, Valverde-Barrantes OJ, Fisher RF (2007) Tree species effects on soil properties in experimental plantations in tropical moist forest. Soil Sci Soc Am J 71:1389–1397 doi:10.2136/sssaj2006.0069

    Article  CAS  Google Scholar 

  • Sayer EJ (2006) Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev Camb Philos Soc 81:1–31 doi:10.1017/S1464793105006846

    PubMed  Google Scholar 

  • Schleppi P, Conedera M, Sedivy I, Thimonier A (2007) Correcting non-linearity and slope effects in the estimation of the leaf area index of forests from hemispherical photographs. Agric For Meteorol 144:236–242 doi:10.1016/j.agrformet.2007.02.004

    Article  Google Scholar 

  • Schutter ME, Sandeno JM, Dick RP (2001) Seasonal, soil type, and alternative management influences on microbial communities of vegetable cropping systems. Biol Fertil Soils 34:397–410 doi:10.1007/s00374-001-0423-7

    Article  CAS  Google Scholar 

  • Scott NA, Binkley D (1997) Foliage litter quality and annual net mineralization: comparison across North American forest sites. Oecologia 111:151–159 doi:10.1007/s004420050219

    Article  Google Scholar 

  • Singh KP, Singh PK, Tripathi SK (1999) Litterfall, litter decomposition and nutrient release patterns in four native tree species raised on coal mine spoil at Singrauli, India. Biol Fertil Soils 29:371–378 doi:10.1007/s003740050567

    Article  Google Scholar 

  • Sparling GP (1992) Ratio of microbial biomass carbon to soil organic C as a sensitive indicator of changes in soil organic matter. Aust J Soil Res 30:195–207 doi:10.1071/SR9920195

    Article  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell Scientific, Oxford

    Google Scholar 

  • Tan X, Chang SX, Kabzems R (2008) Soil compaction and forest floor removal reduced microbial biomass and enzyme activities in a boreal aspen forest soil. Biol Fertil Soils 44:471–479 doi:10.1007/s00374-007-0229-3

    Article  Google Scholar 

  • Tanaka K, Hashimoto S (2006) Plant canopy effects on soil thermal and hydrological properties and soil respiration. Ecol Modell 196:32–44 doi:10.1016/j.ecolmodel.2006.01.004

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707 doi:10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  • Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev Camb Philos Soc 67:321–358 doi:10.1111/j.1469-185X.1992.tb00728.x

    Article  Google Scholar 

  • Zeller B, Colin-Belgrand M, Dambrine E, Martin F, Bottner P (2000) Decomposition of 15N-labelled beech litter and fate of nitrogen derived from litter in a beech forest. Oecologia 123:550–559 doi:10.1007/PL00008860

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ö. Kara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kara, Ö., Bolat, İ., Çakıroğlu, K. et al. Plant canopy effects on litter accumulation and soil microbial biomass in two temperate forests. Biol Fertil Soils 45, 193–198 (2008). https://doi.org/10.1007/s00374-008-0327-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-008-0327-x

Keywords

Navigation