Skip to main content
Log in

Non-chromatic-Adherence of the DP Color Function via Generalized Theta Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

DP-coloring (also called correspondence coloring) is a generalization of list coloring that has been widely studied in recent years after its introduction by Dvořák and Postle in 2015. The chromatic polynomial of a graph is an extensively studied notion in combinatorics since its introduction by Birkhoff in 1912; denoted P(Gm), it equals the number of proper m-colorings of graph G. Counting function analogues of the chromatic polynomial have been introduced and studied for list colorings: \(P_{\ell }\), the list color function (1990); DP colorings: \(P_{DP}\), the DP color function (2019), and \(P^*_{DP}\), the dual DP color function (2021). For any graph G and \(m \in \mathbb {N}\), \(P_{DP}(G, m) \le P_\ell (G,m) \le P(G,m) \le P_{DP}^*(G,m)\). A function f is chromatic-adherent if for every graph G, \(f(G,a) = P(G,a)\) for some \(a \ge \chi (G)\) implies that \(f(G,m) = P(G,m)\) for all \(m \ge a\). It is not known if the list color function and the DP color function are chromatic-adherent. We show that the DP color function is not chromatic-adherent by studying the DP color function of Generalized Theta graphs. The tools we develop along with the Rearrangement Inequality give a new method for determining the DP color function of all Theta graphs and the dual DP color function of all Generalized Theta graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Code Availability

Not applicable.

Notes

  1. When \(\mathcal {H}=(L,H)\) has a canonical labeling, we will always refer to the vertices of H using this naming scheme.

  2. When considering graphs with multiple edges or loops, one should note that this formula for the chromatic polynomial of a cycle also works for \(C_1\) and \(C_2\).

  3. We take \(\mathbb {N}\) to be the domain of the DP color function and dual DP color function of any graph.

  4. Theorem 10 is also implied by the main results in [10].

  5. Throughout this document, whenever \(\sigma \) is a permutation of [m] and \(k \in \mathbb {N}\), we write \(\sigma ^{k}\) for \(\sigma \circ \cdots \circ \sigma \), where \(\sigma \) appears k times. Moreover, we write \(\sigma ^0\) for the identity map on [m].

References

  1. Becker, J., Hewitt, J., Kaul, H., Maxfield, M., Mudrock, J., Spivey, D., Thomason, S., Wagstrom, T.: The DP color function of joins and vertex-gluings of graphs. Discret. Math. 345, 113093 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernshteyn, A.: The asymptotic behavior of the correspondence chromatic number. Discret. Math. 339, 2680–2692 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernshteyn, A.: The Johansson-Molloy theorem for DP-coloring. Random Struct. Algorithms 54(4), 653–664 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernshteyn, A., Kostochka, A.: Sharp Dirac’s theorem for DP-critical graphs. J. Graph Theory 88, 521–546 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernshteyn, A., Kostochka, A.: On differences between DP-coloring and list coloring. Sib. Adv. Math. 21(2), 61–71 (2018)

    MathSciNet  Google Scholar 

  6. Beier, J., Fierson, J., Haas, R., Russel, H.M., Shavo, K.: Classifying coloring graphs. Discret. Math. 339(8), 2100–2112 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Birkhoff, G.D.: A determinant formula for the number of ways of coloring a map. Ann. Math. 14, 42–46 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brown, J.I., Hickman, C.A., Sokal, A.D., Wagner, D.G.: On the chromatic roots of generalized theta graphs. J. Comb. Theory Ser. B 83, 272–297 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carraher, J.M., Mahoney, T., Puelo, G.J., West, D.B.: Sum-paintability of generalized theta-graphs. Graphs Comb. 31(5), 1325–1334 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dong, F., Yang, Y.: DP color functions versus chromatic polynomials. Adv. Appl. Math. 134, 102301 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Donner, Q.: On the number of list-colorings. J. Graph Theory 16, 239–245 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dvořák, Z., Postle, L.: Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8. J. Comb. Theory Ser. B 129, 38–54 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. Congr. Numer. 26, 125–127 (1979)

    MATH  Google Scholar 

  14. Halberg, C., Kaul, H., Liu, A., Mudrock, J. A., Shin, P., Thomason, S.: On polynomial representations of the DP color function: theta graphs and their generalizations, arxiv:2012.12897 (preprint), (2020)

  15. Kaul, H., Mudrock, J.: On the chromatic polynomial and counting DP-colorings of graphs. Adv. Appl. Math. 123, 103121 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kaul, H., Mudrock, J.: Combinatorial Nullstellensatz and DP-coloring of graphs. Discret. Math. 343, 112115 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaul, H., Mudrock, J., Sharma, G., Stratton, Q.: DP-coloring the Cartesian products of graphs. J. Graph Theory

  18. Kim, S.-J., Ozeki, K.: A note on a Brooks’ type theorem for DP-coloring. J. Graph Theory 91(2), 148–161 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kirov, R., Naimi, R.: List coloring and \(n\)-monophilic graphs. Ars Comb. 124, 329–340 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Kostochka, A.V., Sidorenko, A.: Problem session of the prachatice Conference on graph theory, Fourth Czechoslovak Symposium on Combinatorics, Graphs and Complexity Ann. Discrete Math. 51, 380 (1992)

  21. Laiche, D., Bouchemakh, I., Sopena, É.: On the packing coloring of undirected and oriented generalized theta graphs. Australas. J. Comb. 66, 310–329 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Li, R., Broersma, H., Zhang, S.: Properly edge-colored theta graphs in edge-colored complete graphs. Graphs Comb. 35, 261–286 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, R., Loeb, S., Yin, Y., Yu, G.: DP-3-coloring of some planar graphs. Discret. Math. 342, 178–189 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Molloy, M., Postle, L.: Asymptotically good edge correspondence colouring. J. Graph Theory 100, 559–577 (2022)

    Article  MathSciNet  Google Scholar 

  25. Mudrock, J.: A note on the DP-chromatic number of complete bipartite graphs. Discret. Math. 341, 3148–3151 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mudrock, J.: A deletion-contraction relation for the DP color function. Graphs Comb. 38, 115 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mudrock, J., Marsh, M., Wagstrom, T.: On list equitable total colorings of the generalized theta graph. Discuss. Math. Graph Theory 41, 1215–1233 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mudrock, J., Thomason, S.: Answers to two questions on the DP color function. Elect. J. Comb. 28, P2.24 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ruderman, H.: Two new inequalities. Am. Math. Mon. 59, 29–32 (1952)

    MathSciNet  MATH  Google Scholar 

  30. Sathiamoorthy, G., Janakiraman, T.N.: Graceful labeling of generalized theta graphs. Natl. Acad. Sci. Lett. 41(2), 121–122 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sokal, A.D.: Chromatic roots are dense in the whole complex plane. Comb. Probab. Comput. 13, 221–261 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Thomassen, C.: The chromatic polynomial and list colorings. J. Comb. Theory Ser. B 99, 474–479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vizing, V.G.: Coloring the vertices of a graph in prescribed colors. Diskret. Analiz. No. 29, Metody Diskret. Anal. Teorii Kodovi Skhem 101, 3–10 (1976)

    MathSciNet  Google Scholar 

  34. Wang, W., Qian, J., Yan, Z.: When does the list-coloring function of a graph equal its chromatic polynomial. J. Comb. Theory Ser. B 122, 543–549 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. West, D.B.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River, NJ (2001)

    Google Scholar 

  36. Wu, C.W.: On rearrangement inequalities for multiple sequences. Math. Inequal. Appl. 25(2), 511–534 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper is a combination of research projects conducted with undergraduate students: Manh Bui, Michael Maxfield, Paul Shin, and Seth Thomason at the College of Lake County during the the spring and summer of 2021. The support of the College of Lake County is gratefully acknowledged. The authors also thank the anonymous referee whose comments helped improve the readability of this paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Mudrock.

Ethics declarations

Conflict of Interest

Conflict of interest/competing interests is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Proof of Lemma 12

In this section, we give the details of the remaining cases of this proof.

Continuing with (i), suppose \(\varvec{x}_1\) is odd, \(\varvec{x}_2\) is even, and \(\varvec{x}_3\) is even. Then we have the following:

figure d

Continuing with (ii), we suppose \(\varvec{x}_1\) is odd, \(\varvec{x}_2\) is even, and \(\varvec{x}_3\) is odd. Then we have:

figure e

Continuing with (iii), suppose \(\varvec{x}_1\), \(\varvec{x}_2\), and \(\varvec{x}_3\) are all odd. Then we have the following:

$$\begin{aligned} x_{1, h_1(j)} = {\left\{ \begin{array}{ll} n_1 &{} \text {if } j \in [m] \\ n_1 + 1 &{} \text {if } j \in [m^2] - [m], \end{array}\right. } \end{aligned}$$
$$\begin{aligned} x_{2, h_2(j)} = {\left\{ \begin{array}{ll} n_2 &{} \text {if } j \in [2m] - [m] \\ n_2 + 1 &{} \text {if } j \in [m] \cup \left( [m^2] - [2m] \right) , \end{array}\right. } \end{aligned}$$
$$\begin{aligned} x_{3, h_3(j)} = {\left\{ \begin{array}{ll} n_3 &{} \text {if } j \in [3m] - [2m] \\ n_3 + 1 &{} \text {if } j \in [2m] \cup \left( [m^2] - [3m] \right) , \end{array}\right. } \\ x_{1, j} = {\left\{ \begin{array}{ll} n_1 &{} \text {if } j \in [m] \\ n_1 + 1 &{} \text {if } j \in [m^2] - [m], \end{array}\right. } \end{aligned}$$

and

$$\begin{aligned} x_{2, f(j)} = {\left\{ \begin{array}{ll} n_2 + 1 &{} \text {if } j \in [m(m - 1)] \\ n_2 &{} \text {if } j \in [m^2] - [m(m - 1)]. \end{array}\right. } \end{aligned}$$

We also have \(N = m\), and so

$$\begin{aligned} x_{3, g(j)} = {\left\{ \begin{array}{ll} n_3 + 1 &{} \text {if } j \in [m] \cup \left( [m^2] - [2m] \right) \\ n_3 &{} \text {if } j \in [2m] - [m]. \end{array}\right. } \end{aligned}$$

Therefore, we obtain

$$\begin{aligned}&\sum _{j = 1}^{m^2} x_{1, h_1(j)} x_{2, h_2(j)} x_{3, h_3(j)} \\&\quad = \sum _{j = 1}^m n_1(n_2 + 1)(n_3 + 1) + \sum _{j = m + 1}^{2m} (n_1 + 1)n_2(n_3 + 1) + \sum _{j = 2m + 1}^{3m} (n_1 + 1)(n_2 + 1)n_3 \\&\qquad + \sum _{j = 3m + 1}^{m^2} (n_1 + 1)(n_2 + 1)(n_3 + 1) \\&\quad = \sum _{j = 1}^m n_1(n_2 + 1)(n_3 + 1) + \sum _{j = m + 1}^{2m} (n_1 + 1)(n_2 + 1)n_3 \\&\quad + \sum _{j = 2m + 1}^{m(m - 1)} (n_1 + 1)(n_2 + 1)(n_3 + 1) + \sum _{j = m(m - 1) + 1}^{m^2} (n_1 + 1)n_2(n_3 + 1) \\&\quad = \sum _{j = 1}^{m^2} x_{1, j} x_{2, f(j)} x_{3, g(j)}. \end{aligned}$$

B Proof of Lemma 13

We complete the proof of the claim that for each \(k \in [3]\),

$$\begin{aligned} s_k = \frac{(m - 1)^{l_k} - (-1)^{l_k}}{m} + (-1)^{l_k} = \frac{(m - 1)^{l_k} + (-1)^{l_k}(m - 1)}{m} \end{aligned}$$

and

$$\begin{aligned} o_k = \frac{(m - 1)^{l_k} + (-1)^{l_k + 1}}{m} \end{aligned}$$

in the case \(l_k\) is odd. We have \(s_{k, (i, j)} = -1 + ((m - 1)^{l_k} - (-1)^{l_k})/m\) for exactly m choices of \((i, j) \in [m]^2\), and \(s_{k, (i, j)} = ((m - 1)^{l_k} - (-1)^{l_k})/m\) for the remaining \(m(m - 1)\) choices of \((i, j) \in [m]^2\). Therefore, we have \(n_k = -1 + ((m - 1)^{l_k} - (-1)^{l_k})/m\), and

$$\begin{aligned} x_{k, \ell } = {\left\{ \begin{array}{ll} n_k &{} \text {if } \ell \in [m] \\ n_k + 1 &{} \text {if } \ell \in [m^2] - [m]. \end{array}\right. } \end{aligned}$$

It follows by definition that \(\varvec{x}_k\) is odd, so that

$$\begin{aligned} s_k = n_k = \frac{(m - 1)^{l_k} - (-1)^{l_k}}{m} + (-1)^{l_k} \end{aligned}$$

and

$$\begin{aligned} o_k = n_k + 1 = \frac{(m - 1)^{l_k} - (-1)^{l_k}}{m}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bui, M.V., Kaul, H., Maxfield, M. et al. Non-chromatic-Adherence of the DP Color Function via Generalized Theta Graphs. Graphs and Combinatorics 39, 42 (2023). https://doi.org/10.1007/s00373-023-02633-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-023-02633-z

Keywords

Mathematics Subject Classification

Navigation