Skip to main content
Log in

On Strict Brambles

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A strict bramble of a graph G is a collection of pairwise-intersecting connected subgraphs of G. The order of a strict bramble \({{\mathcal {B}}}\) is the minimum size of a set of vertices intersecting all sets of \({{\mathcal {B}}}.\) The strict bramble number of G,  denoted by \(\textsf{sbn}(G),\) is the maximum order of a strict bramble in G. The strict bramble number of G can be seen as a way to extend the notion of acyclicity, departing from the fact that (non-empty) acyclic graphs are exactly the graphs where every strict bramble has order one. We initiate the study of this graph parameter by providing three alternative definitions, each revealing different structural characteristics. The first is a min–max theorem asserting that \(\textsf{sbn}(G)\) is equal to the minimum k for which G is a minor of the lexicographic product of a tree and a clique on k vertices (also known as the lexicographic tree product number). The second characterization is in terms of a new variant of a tree decomposition called lenient tree decomposition. We prove that \(\textsf{sbn}(G)\) is equal to the minimum k for which there exists a lenient tree decomposition of G of width at most k. The third characterization is in terms of extremal graphs. For this, we define, for each k,  the concept of a k-domino-tree and we prove that every edge-maximal graph of strict bramble number at most k is a k-domino-tree. We also identify three graphs that constitute the minor-obstruction set of the class of graphs with strict bramble number at most two. We complete our results by proving that, given some G and k,  deciding whether \(\textsf{sbn}(G) \le k\) is an NP-complete problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available in https://www.cs.upc.edu/~sedthilk/twointer/Obstruction_checker.py, https://www.cs.upc.edu/~sedthilk/twointer/7%20vertices.zip, https://www.cs.upc.edu/~sedthilk/twointer/8%20vertices.zip, https://www.cs.upc.edu/~sedthilk/twointer/9%20vertices.zip, https://www.cs.upc.edu/~sedthilk/twointer/10%20vertices.zip, and https://www.cs.upc.edu/~sedthilk/twointer/11%20vertices.zip.

Notes

  1. We use the term graph parameter for every function mapping graphs to non-negative integers.

  2. We wish to stress that in [21] the term “screen” was used, instead of the term “bramble”.

  3. See https://www.cs.upc.edu/~sedthilk/twointer/Obstruction_checker.py for the verification code.

References

  1. Aidun, I., Dean, F., Morrison, R., Teresa, Y., Yuan, J.: Treewidth and gonality of glued grid graphs. Disc. Appl. Math. 279, 1–11 (2020). https://doi.org/10.1016/j.dam.2019.10.024

    Article  MathSciNet  MATH  Google Scholar 

  2. Archdeacon, D.: A Kuratowski theorem for the projective plane. J. Graph Theory 5, 243–246 (2006). https://doi.org/10.1002/jgt.3190050305

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a \(k\)-tree. SIAM J. Algeb. Disc. Methods 8(2), 277–284 (1987). https://doi.org/10.1137/0608024

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnborg, S., Proskurowski, A., Corneil, D.G.: Forbidden minors characterization of partial 3-trees. Disc. Math. 80(1), 1–19 (1990). https://doi.org/10.1016/0012-365X(90)90292-P

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellenbaum, P., Diestel, R.: Two short proofs concerning tree-decompositions. Comb. Probab. Comput. 11(6), 541–547 (2002). https://doi.org/10.1017/S0963548302005369

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertelé, U., Brioschi, F.: editors. Nonserial Dynamic Programming, volume 91 of Mathematics in Science and Engineering. Elsevier (1972). https://doi.org/10.1016/S0076-5392(08)60140-X. https://www.sciencedirect.com/science/article/pii/S007653920860140X

  7. Bodlaender, H.L.: A partial \(k\)-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1–2), 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bodlaender, H.L., Thilikos, D.M.: Graphs with branchwidth at most three. J. Algorithms 32(2), 167–194 (1999). https://doi.org/10.1006/jagm.1999.1011

    Article  MathSciNet  MATH  Google Scholar 

  9. Dinneen, M.J., Versteegen, R.: Obstructions for the graphs of vertex cover seven. In: Technical Report CDMTCS-430, University of Auckland (2012). http://hdl.handle.net/2292/22193

  10. Dinneen, M.J., Xiong, L.: Minor-order obstructions for the graphs of vertex cover 6. J. Graph Theory 41(3), 163–178 (2002). https://doi.org/10.1002/jgt.10059

    Article  MathSciNet  MATH  Google Scholar 

  11. Fiorini, S., Huynh, T., Joret, G., Varvitsiotis, A.: The excluded minors for isometric realizability in the plane. SIAM J. Disc. Math. 31(1), 438–453 (2017). https://doi.org/10.1137/16M1064775

    Article  MathSciNet  MATH  Google Scholar 

  12. Halin, R.: S-functions for graphs. J. Geom. 8(1), 171–186 (1976). https://doi.org/10.1007/BF01917434

    Article  MathSciNet  MATH  Google Scholar 

  13. Harvey, D.J., Wood, D.R.: Parameters tied to treewidth. J. Graph Theory 84(4), 364–385 (2017). https://doi.org/10.1002/jgt.22030

    Article  MathSciNet  MATH  Google Scholar 

  14. Kinnersley, N.G., Langston, M.A.: Obstruction set isolation for the gate matrix layout problem. Disc. Appl. Math. 54(2), 169–213 (1994). https://doi.org/10.1016/0166-218X(94)90021-3

    Article  MathSciNet  MATH  Google Scholar 

  15. Kozawa, K., Otachi, Y., Yamazaki, K.: Lower bounds for treewidth of product graphs. Disc. Appl. Math. 162, 251–258 (2014). https://doi.org/10.1016/j.dam.2013.08.005

    Article  MathSciNet  MATH  Google Scholar 

  16. Leivaditis, A., Singh, A., Stamoulis, G., Thilikos, D.M., Tsatsanis, K., Velona, V.: Minor-obstructions for apex sub-unicyclic graphs. Disc. Appl. Math. 284, 538–555 (2020). https://doi.org/10.1016/j.dam.2020.04.019

    Article  MathSciNet  MATH  Google Scholar 

  17. Reed, Bruce A.: Tree width and tangles: a new connectivity measure and some applications, page 87–162. London Mathematical Society Lecture Note Series. Cambridge University Press (1997). https://doi.org/10.1017/CBO9780511662119.006

  18. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Combin. Theory Ser. B. 36(1), 49–64 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Combin. Theory Ser. B 92(2), 325–357 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Robertson, N., Seymour, P.D., Thomas, R.: Sachs’ linkless embedding conjecture. J. Combin. Theory Ser. B 64(2), 185–227 (1995). https://doi.org/10.1006/jctb.1995.1032

    Article  MathSciNet  MATH  Google Scholar 

  21. Seymour, P.D., Thomas, R.: Graph searching and a min–max theorem for tree-width. J. Comb. Theory Ser. B 58(1), 22–33 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Thilikos, D.M.: Algorithms and obstructions for linear-width and related search parameters. Disc. Appl. Math. 105(1), 239–271 (2000). https://doi.org/10.1016/S0166-218X(00)00175-X

    Article  MathSciNet  MATH  Google Scholar 

  23. Tutte, W.T.: A theory of \(3\)-connected graphs. Nederl. Akad. Wetensch. Proc. Ser. Indag. Math. 23, 441–455 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tutte, W. T.: Connectivity in Graphs. University of Toronto Press (1966)

  25. van der Holst, H.: On the “largeur d’arborescence’’. J. Graph Theory 41(1), 24–52 (2002). https://doi.org/10.1002/jgt.10046

    Article  MathSciNet  MATH  Google Scholar 

  26. Wagner, K.: Über eine eigenschaft der ebenen komplexe. Math. Ann. 114, 570–590 (1937). https://doi.org/10.1007/BF01594196

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Koichi Yamazaki for drawing our attention to the strict brambles.

Funding

Authors E. Protopapas and D. M. Thilikos were supported by the ANR projects DEMOGRAPH (ANR-16-CE40-0028), ESIGMA (ANR-17-CE23-0010), and the French-German Collaboration ANR/DFG Project UTMA (ANR-20-CE92-0027). Authors E. Lardas and D. Zoros declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to the preparation of this manuscript.

Corresponding author

Correspondence to Evangelos Protopapas.

Ethics declarations

Conlict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lardas, E., Protopapas, E., Thilikos, D.M. et al. On Strict Brambles. Graphs and Combinatorics 39, 24 (2023). https://doi.org/10.1007/s00373-023-02618-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-023-02618-y

Keywords

Mathematics Subject Classification

Navigation