Skip to main content
Log in

Group-Annihilator Graphs Realised by Finite Abelian Groups and Its Properties

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let G be a finite abelian group viewed a \({\mathbb {Z}}\)-module and let \({\mathcal {G}} = (V, E)\) be a simple graph. In this paper, we consider a graph \(\Gamma (G)\) called as a group-annihilator graph. The vertices of \(\Gamma (G)\) are all elements of G and two distinct vertices x and y are adjacent in \(\Gamma (G)\) if and only if \([x : G][y : G]G = \{0\}\), where \(x, y\in G\) and \([x : G] = \{r\in {\mathbb {Z}} : rG \subseteq {\mathbb {Z}}x\}\) is an ideal of a ring \({\mathbb {Z}}\). We discuss in detail the graph structure realised by a group G. Moreover, we study the creation sequence, hyperenergeticity and hypoenergeticity of group-annihilator graphs. Finally, we conclude the paper with a discussion on Laplacian eigen values of the group-annihilator graph. We show that the Laplacian eigen values are representatives of orbits of the group action: \(Aut(\Gamma (G)) \times G \rightarrow G\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anderson, D.F., Livingston, P.S.: The zero-divisor graph of a commutative ring. J. Algebra 217, 434–447 (1999)

    Article  MathSciNet  Google Scholar 

  2. Bapat, R.B.: Graphs and matrices. Springer/Hindustan Book Agency, London (2010)

    Book  Google Scholar 

  3. Beck, I.: Coloring of commutative rings. J. Algebra 116, 208–226 (1988)

    Article  MathSciNet  Google Scholar 

  4. Bohdan, Z.: Intersection graphs of finite abelian groups. Czechoslov. Math. J. 25(2), 171–174 (1975)

    Article  MathSciNet  Google Scholar 

  5. Brauer, R., Fowler, K.A.: On groups of even order. Ann. Math. 62(2), 565–583 (1955)

    Article  MathSciNet  Google Scholar 

  6. Cameron, P., Ghosh, S.: The power graph of a finite group. Discret. Math. 311(13), 1220–1222 (2011)

    Article  MathSciNet  Google Scholar 

  7. Chvátal, V., Hammer, P.L.: Aggregation of inequalities in integer programming. Ann. Discret. Math. 1, 145–162 (1977)

    Article  MathSciNet  Google Scholar 

  8. Chung, F.: Spectral graph theory. AMS 92 (1997)

  9. Hammer, P.L., Kelmans, A.K.: Laplacian spectra and spanning trees of threshold graphs. Discret. Appl. Math. 65, 255–273 (1996)

    Article  MathSciNet  Google Scholar 

  10. Henderson, P.B., Zalcstein, Y.: A graph-theoretic characterization of the PV class of synchronizing primitives. SIAM J. Comput. 6(1), 88–108 (1977)

    Article  MathSciNet  Google Scholar 

  11. Liebeck, M.W., Shalev, A.: Simple groups, probabilistic methods, and a conjecture of Kantor and Lubotzky. J. Algebra 184, 31–57 (1996)

    Article  MathSciNet  Google Scholar 

  12. Merris, R.: Graph theory. John Wiley and Sons, Hoboken (2011)

    MATH  Google Scholar 

  13. Merris, R.: Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197, 143–176 (1994)

    Article  MathSciNet  Google Scholar 

  14. Nikiforov, V.: The energy of graphs and matrices. J. Math. Anal. Appl. 326, 1472–1475 (2007)

    Article  MathSciNet  Google Scholar 

  15. Dutta, K., Prasad, A.: Degenerations and orbits in finite abelian groups. J. Comb. Theory Ser. A 118, 1685–1694 (2011)

    Article  MathSciNet  Google Scholar 

  16. Gutman, I.: Hyperenergetic and hypoenergetic graphs. Zbornik Radova 22, 113–135 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Jacobs, D.P., Trevisan, V., Tura, F.: Eigenvalues and energy in threshold graphs. Linear Algebra Appl. 465, 412–425 (2015)

    Article  MathSciNet  Google Scholar 

  18. Jacobs, D.P., Trevisan, V., Tura, F.: Computing the characteristic polynomial of threshold graphs. J. Graph Algorithms Appl. 18(5), 709–719 (2014)

    Article  MathSciNet  Google Scholar 

  19. Mahadev, N.V.R., Peled, U.N.: Threshold graphs and related topics. Ann. Discret. Math. 56 (1995)

  20. Miller, G.A.: Determination of all the characteristic subgroups of any abelian group. Am. J. Math. 27(1), 15–24 (1905)

    Article  MathSciNet  Google Scholar 

  21. Pirzada, S., Raja, R., Redmond, S.P.: Locating sets and numbers of graphs associated to commutative rings. J. Algebra Appl. 13(7), 1450047 (2014)

    Article  MathSciNet  Google Scholar 

  22. Pirzada, S., Raja, R.: On the metric dimension of a zero-divisor graph. Commun. Algebra 45(4), 1399–1408 (2017)

    Article  MathSciNet  Google Scholar 

  23. Raja, R., Pirzada, S., Redmond, S.P.: On Locating numbers and codes of zero-divisor graphs associated with commutative rings. J. Algebra Appl. 15(1), 1650014 (2016)

    Article  MathSciNet  Google Scholar 

  24. Raja, R., Pirzada, S.: On annihilating graphs of modules over commutative rings. Algebra Colloq. (To appear)

  25. Redmond, S.P.: An ideal-based zero-divisor graph of a commutative ring. Commun. Algebra 31, 4425–4443 (2003)

    Article  MathSciNet  Google Scholar 

  26. Schwachhöfer, M., Stroppel, M.: Finding representatives for the orbits under the automorphism group of a bounded abelian group. J. Algebra 211(1), 225–239 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research project was initiated when the authors visited the Stat-Math Unit, Indian Statistical Institute Bangaluru, India. So, we are immensely grateful to ISI Bangaluru for all the facilities. Moreover, the authors would like to thank Amitava Bhattacharya of TIFR Mumbai for the motivation of this research work. The first author’s research is being partially supported by National Board of Higher Mathematics, Department of Atomic Energy, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eshita Mazumdar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Theorem 3

Appendix: Proof of Theorem 3

We furnish the proof of Theorem 3 in this section.

Proof

  • Consider the case \(a \in {\mathcal {O}}_{\alpha , p^{\alpha }}\), and \(b\in {\mathcal {O}}_{\beta , p^{\beta }}\)

    • For \(c \in {\mathcal {O}}_{\gamma , p^{\gamma }},\) it is trivially true that \([(a,b,c):G]= p^{\gamma }{\mathbb {Z}}.\)

    • Let \(c \in {\mathcal {O}}_{\gamma , p^i}\), where \(0\le i \le \beta -1.\) Clearly, \(p^{\beta }{\mathbb {Z}} \subset [(a,b,c): G].\) Now by considering \(y \in [(a,b,c):G]\), we see that \(y (0 ,1, 0)= n (0,0,c)\) for some integer n. That completes the other part.

    • Let \(c \in {\mathcal {O}}_{\gamma , p^i}\), where \(\beta \le i \le \gamma -1.\) Then \(c= p^i k'\), where \((k',p) = 1.\) Clearly, \(p^{i}{\mathbb {Z}} \subset [(a,b,c): G].\) Now by considering \(y \in [(a,b,c):G]\), we again see that \(y (0 ,0, 1)= n (0,0,c)\) for some integer n. So, we are done.

  • Consider the case \(a \in {\mathcal {O}}_{\alpha , p^{\alpha }}\), so \(a=0\) and \(b\in {\mathcal {O}}_{\beta , p^{j}}\), where \(0 \le j \le \beta -1.\) So, \(b= p^jb'\) for some \(b'\), where \((b',p)=1.\)

    • For \(c \in {\mathcal {O}}_{\gamma , p^{\gamma }},\) it is trivially true that \([(a,b,c):G]= p^{\gamma }{\mathbb {Z}}.\)

    • Let \(c \in {\mathcal {O}}_{\gamma , p^i}\), where \(0\le i \le j\). So, \(c= p^ic'\) for some \(c'\), where \((c',p)=1.\) Then for any \(y = p^{\beta }k \in p^{\beta }{\mathbb {Z}},\) \(y (u,v,w) = (0, 0, p^\beta ) kw = wkc'^{-1}p^{\beta -i} (a,b,c)\) as \(j-i \ge 0.\) So \(p^{\beta }{\mathbb {Z}} \subset [(a,b,c): G].\) Now by considering \(y \in [(a,b,c):G]\), we have \(y (0 ,1, 0)= n (0,0,c)\) for some integer n,  so we are done, since \(j-i \ge 0.\)

    • Let \(c \in {\mathcal {O}}_{\gamma , p^i}\), where \(j+1\le i \le \gamma - \beta +j.\) Then \(c= p^i c'\) for some \(c'\), where \((c',p) = 1.\) For any \(y = p^{i+\beta -j}k' \in p^{\beta }{\mathbb {Z}},\) \(y (u,v,w) = (0, 0, p^{\beta +i-j}) k'w = k'wc'^{-1}p^{\beta -j} (a,b,c)\) as \(\beta - j \ge 1.\) So, \(p^{\beta +i -j}{\mathbb {Z}} \subset [(a,b,c): G].\) Now by considering \(y \in [(a,b,c):G]\), we have \(y (0 ,0, 1)= n (0,b,c)\) for some integer n,  this implies \(p^{\beta -j}\mid n\) and \(y = p^{\beta +i-j}c' (\bmod p^{\gamma } )\), hence the result follows.

    • Let \(c \in {\mathcal {O}}_{\gamma , p^i}\), where \(\gamma - \beta +j+1\le i \le \gamma - 1.\) Then \(c= p^i c'\) for some \(c'\), where \((c',p) = 1.\) Clearly \(p^{\gamma }{\mathbb {Z}} \subset [(a,b,c): G].\) Now by considering \(y \in [(a,b,c):G]\), we have \(y (0 ,0, 1)= n (0,b,c)\) for some integer n. This implies \(p^{\beta -j}\mid n\) and since \(i+\beta - j \ge \gamma +1\), so \(y = p^{\beta +i-j}c' (\bmod p^{\gamma } )\).

  • Consider the case \(a \in {\mathcal {O}}_{\alpha , p^k}\). Assume that \(a= p^ka'\) for some \(a'\), where \((a',p)=1\) for \(0\le k \le \alpha -1\) and \(b\in {\mathcal {O}}_{\beta , p^{\beta }},\)

    • For \(c \in {\mathcal {O}}_{\gamma , p^{\gamma }},\) it is trivially true that \([(a,b,c):G]= p^{\gamma }{\mathbb {Z}}.\)

    • Let \(c \in {\mathcal {O}}_{\gamma , p^i}\), where \(0\le i \le \beta - \alpha +k\). So \(c= p^ic'\) for some \(c'\), where \((c',p)=1.\) For any \(y = p^{\beta }k' \in p^{\beta }{\mathbb {Z}},\)

      $$\begin{aligned}&y (u,v,w) = (0, 0, p^\beta ) k'w \\&\quad = k'wc'^{-1}(p^{\beta -i+k}a', 0 , p^{\beta -i} p^i c') \in {\mathbb {Z}}(a,0,c), \end{aligned}$$

      since \(\beta -i+k \ge \alpha .\) So, \(p^{\beta }{\mathbb {Z}} \subset [(a,b,c): G].\) Now by considering \(y \in [(a,b,c):G]\), we have \(y (0 ,1, 0)= n (a,0,c)\) for some integer n, so we get \(y\in p^{\beta }{\mathbb {Z}}\) and we are done.

    • Let \(c \in {\mathcal {O}}_{\gamma , p^i}\), where \(\beta - \alpha +k +1\le i \le \gamma - \alpha +k-1.\) Then \(c= p^i c'\) for some \(c'\), where \((c',p) = 1.\) For any \(y = p^{i+\alpha -k}k' \in p^{i+\alpha -k}{\mathbb {Z}},\)

      $$\begin{aligned} y (u,v,w)= & {} (0, 0, p^{\alpha +i-k}c') c'^{-1}k'w\\= & {} (p^{\alpha -k}p^ka',0,p^{\alpha -k} p^i c') c'^{-1}k'w \in {\mathbb {Z}}(a,b,c), \end{aligned}$$

      since \(i+\alpha -k \ge \beta +1.\) So, \(p^{\alpha +i -k}{\mathbb {Z}} \subset [(a,b,c): G].\) Now by considering \(y \in [(a,b,c):G]\), we have \(y (0 ,0, 1)= n (p^ka',0,p^ic')\) for some integer n. This implies \(p^{\alpha -k}\mid n\) and \(y = p^{\alpha - k +i}n' (\bmod p^{\gamma } )\) for some integer \(n'\). Since \(\alpha - k +i \le \gamma -1,\) so \(y\in p^{\alpha - k +i} {\mathbb {Z}}.\)

    • Let \(c \in {\mathcal {O}}_{\gamma , p^i}\), where \(\gamma - \alpha +k\le i \le \gamma - 1.\) Then \(c= p^i c'\) for some \(c'\), where \((c',p) = 1.\) Clearly \(p^{\gamma }{\mathbb {Z}} \subset [(a,b,c): G].\)

      Now by considering \(y \in [(a,b,c):G]\), we have \(y (0 ,0, 1)= n (a,0,c)\) for some integer n. This implies \(p^{\alpha - k}\mid n\) and since \(\alpha -k+i \ge \gamma\), so \(y = p^inc' (\bmod p^{\gamma } )\).

  • Consider the case \(a \in {\mathcal {O}}_{\alpha , p^k}\). Assume that \(a= p^ka'\) for some \(a'\), where \((a',p)=1\) for \(0\le k \le \alpha -1\) and \(b\in {\mathcal {O}}_{\beta , p^{j}},\) so \(b=p^jb'\) for some \(b'\), where \((b',p)=1\) for \(0 \le j \le \beta -1.\)

    • For \(c \in {\mathcal {O}}_{\gamma , p^{\gamma }},\) it is trivially true that \([(a,b,c):G]= p^{\gamma }{\mathbb {Z}}.\)

    • Let \(c \in {\mathcal {O}}_{\gamma , p^i}\), where \(0\le i \le \gamma - \beta +j\). So \(c= p^ic'\) for some \(c'\), where \((c',p)=1.\) Note that \(\beta -i \ge \alpha .\) Then for any \(y = p^{\beta }k' \in p^{\beta }{\mathbb {Z}},\)

      $$\begin{aligned} y (u,v,w)= & {} (0, 0, p^\beta ) k'w = k'c'^{-1}w (p^{\beta -i}p^k a',\\&p^{\beta -i}p^j b', p^{\beta -i} p^i c') \in {\mathbb {Z}}(a,b,c). \end{aligned}$$

      So \(p^{\beta }{\mathbb {Z}} \subset [(a,b,c): G].\)

      Now by considering \(y \in [(a,b,c):G]\), we have \(y (0 ,1, 0)= n (a,b,c)\) for some integer n. Then \(p^{\gamma -i} \mid n\) and \(y\equiv p^jc' (\bmod )\), so \(y \in p^{\beta } {\mathbb {Z}}\), since \(\gamma + (j-i) > \beta .\)

    • Let \(c \in {\mathcal {O}}_{\gamma , p^i}\), where \(0\le i \le \gamma - \beta +j\). So, \(c= p^ic'\) for some \(c'\), where \((c',p)=1.\) Since \(i> j\), so \(\beta -j \ge \alpha .\) Then for any \(y = p^{\beta +i -j}k' \in p^{\beta +i-j}{\mathbb {Z}},\)

      $$\begin{aligned} y (u,v,w)= & {} (0, 0, p^{\beta +i-j}c') k' w= k' w(0, p^{\beta -j}p^jb', p^{\beta +i-j}c') \\= & {} k'w (p^{\beta -j}p^ka', p^{\beta -j}p^jb', p^{\beta +i-j}c') \in {\mathbb {Z}}(a,b,c) \end{aligned}$$

      as \(i>j.\) So \(p^{\beta }{\mathbb {Z}} \subset [(a,b,c): G].\)

      Now by considering \(y \in [(a,b,c):G]\), we have \(y (0 ,0, 1)= n (a,b,c)\) for some integer n. Then \(p^{\beta -j} \mid n\) and \(y\equiv p^ic' (\bmod )\), so \(y \in p^{\beta +i-j} {\mathbb {Z}}\), since \(i< \gamma -\beta +j.\)

    • Let \(c \in {\mathcal {O}}_{\gamma , p^i}\), where \(i \ge j.\) Then \(c= p^i c'\) for some \(c'\), where \((c',p) = 1.\) Also assume \(i>\beta -\alpha >j.\) For any \(y = p^{i+\beta -j}k' \in p^{i+\beta -j}{\mathbb {Z}},\)

      $$\begin{aligned} y (u,v,w)= & {} (0,0,p^{\beta +i-j} c')c'^{-1}k'wa'\\= & {} (p^{\beta -j}p^ka',p^{\beta -j}p^jb',p^{\beta +i-j} c')k'wc'^{-1} \in {\mathbb {Z}}(a,b,c) \end{aligned}$$

      as \(\beta -\alpha >j.\) So, \(p^{\beta +i -j}{\mathbb {Z}} \subset [(a,b,c): G].\)

      Now by considering \(y \in [(a,b,c):G]\), we have \(y (0 ,0, 1)= n (p^ka',p^jb',p^ic')\) for some integer n. This implies \(p^{\beta -j}\mid n\) and \(y = p^{i}nc' (\bmod p^{\gamma })\). Since \(i < \gamma -\beta +j,\) so \(y\in p^{\beta +i - j +} {\mathbb {Z}}.\).

    • Let \(c \in {\mathcal {O}}_{\gamma , p^i}\), where \(i \ge j.\) Then \(c= p^i c'\) for some \(c'\), where \((c',p) = 1.\) Also assume \(\beta -\alpha < i\) , \(i <\gamma -\alpha +k\) and \(j> \beta -\alpha +k.\) For any \(y = p^{i+\alpha -k}k' \in p^{i+\alpha -k}{\mathbb {Z}},\)

      $$\begin{aligned} y (u,v,w)= & {} (0,0,p^{\alpha +i-k} c')k'wc'^{-1} \\= & {} (p^{\alpha -k}p^k a',p^{\alpha -k}p^jb',p^{\alpha +i-k} c')k'wc'^{-1} \in {\mathbb {Z}}(a,b,c) \end{aligned}$$

      as \(\alpha -k > \beta -j.\) So, \(p^{\alpha +i -k}{\mathbb {Z}} \subset [(a,b,c): G].\)

      Now by considering \(y \in [(a,b,c):G]\), we have \(y (0 ,0, 1)= n (p^ka',p^jb',p^ic')\) for some integer n. This implies \(p^{\alpha -k}\mid n\) and \(y = p^{i}nc' (\bmod p^{\gamma })\). Since \(i < \gamma - \alpha +k,\) so \(y\in p^{\alpha +i - k} {\mathbb {Z}}.\)

    • Let \(c \in {\mathcal {O}}_{\gamma , p^i}\), where \(i \ge j.\) Then \(c= p^i c'\) for some \(c'\), where \((c',p) = 1.\) Also assume \(\beta -\alpha < i\) , \(\gamma -\alpha +k \le i\) and \(j> \beta -\alpha +k.\) From the previous argument \(i \ge \gamma -\alpha +k\), therefore we have \(p^{\gamma }{\mathbb {Z}}= [(a,b,c):G].\)

    • Let \(c \in {\mathcal {O}}_{\gamma , p^i}\), where \(i \ge j.\) Then \(c= p^i c'\) for some \(c'\), where \((c',p) = 1.\) Also assume \(\beta - \alpha < j \le \beta -\alpha +k.\) For any \(y = p^{i+\beta -j}k' \in p^{i+\beta - j}{\mathbb {Z}},\)

      $$\begin{aligned} y (u,v,w)= & {} (0,0,p^{\beta +i-j} c')k'wc'^{-1}\\= & {} (p^{\beta -j+k}a',p^{\beta -j}p^jb',p^{\beta +i-j} c')k'wc'^{-1} \in {\mathbb {Z}}(a,b,c) \end{aligned}$$

      as \(\beta -\alpha < j \le \beta -\alpha +k.\) So, \(p^{\beta +i -j}{\mathbb {Z}} \subset [(a,b,c): G].\)

      Now by considering \(y \in [(a,b,c):G]\), we have \(y (0 ,0, 1)= n (p^ka',p^jb',p^ic')\) for some integer n. This implies \(p^{\beta -j}\mid n\) and \(y = p^{i}nc' (\bmod p^{\gamma })\). Since \(i < \gamma - \beta +j,\) so \(y\in p^{\beta +i - j} {\mathbb {Z}}.\)

    • Let \(c \in {\mathcal {O}}_{\gamma , p^i}\), where \(i < j.\) Then \(c= p^i c'\) for some \(c'\), where \((c',p) = 1.\) Also assume \(i> \beta -\alpha\) and \(\beta +k-j \ge \alpha .\)

      For any \(y = p^{\beta }k' \in p^{\beta }{\mathbb {Z}},\)

      $$\begin{aligned} y (u,v,w)= & {} (0,0,p^{\beta -i}p^ic')k'wc'^{-1}\\= & {} (p^{\beta -i}p^ka',p^{\beta -i}p^jb',p^{\beta -i}p^i c')k'wc'^{-1} \in {\mathbb {Z}}(a,b,c) \end{aligned}$$

      as \(\beta -\alpha < i.\) So, \(p^{\beta }{\mathbb {Z}} \subset [(a,b,c): G].\)

      Now by considering \(y \in [(a,b,c):G]\), we have \(y (0 ,1, 0)= n (p^ka',p^jb',p^ic')\) for some integer n. This implies \(p^{\gamma -i}\mid n\) and \(y = p^{j}nb' (\bmod p^{\gamma } )\). Since \(i < \gamma - \beta +j,\) so \(y\in p^{\beta } {\mathbb {Z}}.\)

    • Let \(c \in {\mathcal {O}}_{\gamma , p^i}\), where \(i < j.\) Then \(c= p^i c'\) for some \(c'\) such that \((c',p) = 1.\) Also assume \(\beta -\alpha +k>i> \beta -\alpha\) and \(j> \beta -\alpha +k.\) For any \(y = p^{\beta }k' \in p^{\beta }{\mathbb {Z}},\) then

      $$\begin{aligned} y (u,v,w)= & {} (0,0,p^{\beta -i}p^ic')k'wc'^{-1}\\= & {} (p^{\beta -i}p^ka',p^{\beta -i}p^jb',p^{\beta -i}p^i c')k'wc'^{-1} \in {\mathbb {Z}}(a,b,c) \end{aligned}$$

      as \(\beta -\alpha +k> i.\) So \(p^{\beta }{\mathbb {Z}} \subset [(a,b,c): G].\)

      Now by considering \(y \in [(a,b,c):G]\), we have \(y (0 ,1, 0)= n (p^ka',p^jb',p^ic')\) for some integer n. This implies \(p^{\alpha -k}\mid n\) and \(y = p^{j}nc' (\bmod p^{\beta })\). Since \(j > \beta -\alpha +k,\) so \(y\in p^{\beta } {\mathbb {Z}}.\)

    • Let \(c \in {\mathcal {O}}_{\gamma , p^i}\), where \(i < j.\) Then \(c= p^i c'\) for some \(c'\), where \((c',p) = 1.\) Also assume \(\gamma -\alpha +k> i \ge \beta -\alpha +k\). For any \(y = p^{\alpha +i-k }k' \in p^{\alpha +i-k }{\mathbb {Z}},\)

      $$\begin{aligned} y (u,v,w)= & {} (0,0,p^{\alpha -k}p^ic')k'wc'^{-1}\\= & {} (p^{\alpha -k}p^ka',p^{\alpha -k}p^jb',p^{\alpha -k}p^i c')k'wc'^{-1} \in {\mathbb {Z}}(a,b,c) \end{aligned}$$

      as \(\alpha -k+j> \beta .\) So, \(p^{\alpha +i-k}{\mathbb {Z}} \subset [(a,b,c): G].\)

      Now by considering \(y \in [(a,b,c):G]\), we have \(y (0 ,0, 1)= n (p^ka',p^jb',p^ic')\) for some integer n. This implies \(p^{\alpha -k}\mid n\) and \(y = p^{i}nc' (\bmod p^{\gamma })\). Since \(i < \gamma -\alpha +k,\) so \(y\in p^{\alpha -k+i} {\mathbb {Z}}.\)

    • Let \(c \in {\mathcal {O}}_{\gamma , p^i}\), where \(i < j.\) Then \(c= p^i c'\) for some \(c'\), where \((c',p) = 1.\) Also assume \(i \ge \gamma -\alpha +k\) and \(j> \beta -\alpha +k\). By assuming that \(i \ge \gamma -\alpha +k\) and follow the same proof as above, we trivially have the required result.

    • Let \(c \in {\mathcal {O}}_{\gamma , p^i}\) where \(\gamma - \beta +j\le i \le \gamma - 1.\) Then \(c= p^i c'\) for some \(c'\), where \((c',p) = 1.\) Clearly \(p^{\gamma }{\mathbb {Z}} \subset [(a,b,c): G].\) Now by considering \(y \in [(a,b,c):G]\), we have \(y (0 ,0, 1)= n (a,b,c)\) for some integer n. This implies \(p^{\beta - j}\mid n\) and since \(\beta +i -j \ge \gamma\), so \(y = p^inc' (\bmod p^{\gamma } )\).

      This completes the proof.

\(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazumdar, E., Raja, R. Group-Annihilator Graphs Realised by Finite Abelian Groups and Its Properties. Graphs and Combinatorics 38, 25 (2022). https://doi.org/10.1007/s00373-021-02422-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-021-02422-6

Keywords

Mathematics Subject Classification

Navigation