Skip to main content
Log in

Point Partition Numbers: Perfect Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Graphs considered in this paper are finite, undirected and without loops, but with multiple edges. For an integer \(t\ge 1\), denote by \(\mathcal{MG}_t\) the class of graphs whose maximum multiplicity is at most t. A graph G is called strictly t-degenerate if every non-empty subgraph H of G contains a vertex v whose degree in H is at most \(t-1\). The point partition number \(\chi _t(G)\) of G is the smallest number of colors needed to color the vertices of G so that each vertex receives a color and vertices with the same color induce a strictly t-degenerate subgraph of G. So \(\chi _1\) is the chromatic number, and \(\chi _2\) is known as the point aboricity. The point partition number \(\chi _t\) with \(t\ge 1\) was introduced by Lick and White (Can J Math 22:1082–1096, 1970). If H is a simple graph, then tH denotes the graph obtained from H by replacing each edge of H by t parallel edges. Then \(\omega _t(G)\) is the largest integer n such that G contains a \(tK_n\) as a subgraph. Let G be a graph belonging to \(\mathcal{MG}_t\). Then \(\omega _t(G)\le \chi _t(G)\) and we say that G is \(\chi _t\)-perfect if every induced subgraph H of G satisfies \(\omega _t(H)=\chi _t(H)\). Based on the Strong Perfect Graph Theorem due to Chudnowsky, Robertson, Seymour and Thomas (Ann Math 164:51–229, 2006), we give a characterization of \(\chi _t\)-perfect graphs of \(\mathcal{MG}_t\) by a set of forbidden induced subgraphs (see Theorems 2 and 3). We also discuss some complexity problems for the class of \(\chi _t\)-critical graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Andres, S.D.: On characterizing game-perfect graphs by forbidden induced subgraphs. Contrib. Discrete Math. 7, 21–34 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Andres, S.D., Hochstättler, W.: Perfect digraphs. J. Graph Theory 79, 21–29 (2015)

    Article  MathSciNet  Google Scholar 

  3. Bang-Jensen, J., Bellitto, T., Schweser, T., Stiebitz, M.: Hajós and Ore construction for digraphs. Electron. J. Combin. 27, P1.63 (2020)

  4. Bang-Jensen, J., Havet, F., Trotignon, N.: Finding an induced subdivision of a digraph. Theor. Comput. Sci. 443, 10–24 (2012)

    Article  MathSciNet  Google Scholar 

  5. Berge, C.: Some classes of perfect graphs. In: Six Papers on Graph Theory, Indian Statistical Institute, pp. 1–21. Mc Millan, Calcutta (1963)

  6. Bollobás, B., Manvel, B.: Optimal vertex partition. Bull. Lond. Math. Soc. 11, 113–116 (1979)

    Article  MathSciNet  Google Scholar 

  7. Chudnovsky, M., Cornuéjols, G., Liu, X., Seymour, P., Vušković, K.: Recognizing Berge graphs. Combinatorica 25, 143–186 (2005)

    Article  MathSciNet  Google Scholar 

  8. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164, 51–229 (2006)

    Article  MathSciNet  Google Scholar 

  9. Gasparian, G.S.: Minimal imperfect graphs: a simple approach. Combinatorica 16, 209–212 (1996)

    Article  MathSciNet  Google Scholar 

  10. Grötschel, M., Lovász, L., Schrijver, L.: The ellipsoid method and its consequence in combinatorial optimization. Combinatorica 1, 169–197 (1981)

    Article  MathSciNet  Google Scholar 

  11. Grötschel, M., Lovász, L., Schrijver, L.: Geometric Algorithms and Combinatorial Optimization (Second corrected edition). Springer, Berlin (1993)

    Book  Google Scholar 

  12. Hajós, G.: Über eine Konstruktion nicht \(n\)-färbbarer Graphen. Wiss. Z. Martin Luther Univ. Halle-Wittenberg Math.-Natur. Reihe 10, 116–117 (1961)

  13. Hedetniemi, S.T.: On partitioning planar graphs. Can. Math. Bull. 11, 203–211 (1968)

    Article  MathSciNet  Google Scholar 

  14. Lick, D.R., White, A.: \(k\)-degenerate graphs. Can. J. Math. 22, 1082–1096 (1970)

    Article  MathSciNet  Google Scholar 

  15. Lovász, L.: A characterization of perfect graphs. J. Combin. Theory Ser. B 13, 95–98 (1972)

    Article  MathSciNet  Google Scholar 

  16. Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discrete Math. 2, 253–267 (1972)

    Article  MathSciNet  Google Scholar 

  17. von Postel, J., Schweser, T., Stiebitz, M.: Point partition number: decomposable and indecomposable critical graphs (2019). arXiv:1912.12654. Accessed 17 July 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schweser.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Postel, J., Schweser, T. & Stiebitz, M. Point Partition Numbers: Perfect Graphs. Graphs and Combinatorics 38, 31 (2022). https://doi.org/10.1007/s00373-021-02410-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-021-02410-w

Keywords

Mathematics Subject Classification

Navigation