1 Introduction

Suppose that G is a finite group and X is a subset of G. The commuting graph, \({\mathcal {C}}(G,X)\), has X as its vertex set and two vertices \(x, y \in X\) are joined by an edge if \(x \ne y\) and x and y commute. The extensive bibliography in [9] points towards the many varied commuting graphs which have been studied. But here we shall be considering commuting involution graphs—these are commuting graphs \({\mathcal {C}}(G,X)\) where X is a G-conjugacy class of involutions. From now on X is assumed to be a G-conjugacy class of involutions. Because involutions are often centre stage in the study of non-abelian simple groups, there is a large literature on their commuting involution graphs. Indeed, such graphs have been instrumental in the construction of some of the sporadic simple groups. For example, the three Fischer groups with the conjugacy class being the 3-transpositions were investigated by Fischer [11], resulting in the construction of these groups. Later, also prior to their construction, commuting involution graphs for the Baby Monster (\(\{3,4\}\)-transpositions) and the Monster (6-transpositions) were analyzed. Recently the commuting involution graphs of the sporadic simple groups have received much attention, see [5, 12, 14, 15, 17]. For those simple groups of Lie type consult [1, 4, 8,9,10], while an analysis of the commuting involution graphs of finite Coxeter groups may be found in [2, 3].

The aim of this short note is to describe certain features of \({\mathcal {C}}(G,X)\) when G is one of the exceptional Lie type groups of characteristic two. Specifically we consider G being one of the simple groups \(^3D_4(2), E_6(2), ^2F_4(2)'\) and \(F_4(2)\).

For \(x\in X\) we define the \(i^{\mathrm {th}}\) disc of x, \(\Delta _i(x)\), (\(i \in \mathbb {N}\)) to be

$$\begin{aligned} \Delta _i(x) = \{y \in X \; | \; d(x,y)=i\} \end{aligned}$$

where \(d( , )\) is the usual distance metric on the graph \({\mathcal {C}}(G,X)\). Of course, G acting by conjugation on X embeds G in the group of graph automorphisms of \({\mathcal {C}}(G,X)\) and, evidentily, G is transitive on the vertices of \({\mathcal {C}}(G,X)\). We now choose \(t \in X\) to be a fixed vertex of \({\mathcal {C}}(G,X)\)—our main focus is the description of the discs of t in \({\mathcal {C}}(G,X)\). The diameter of \({\mathcal {C}}(G,X)\) will be denoted by \(\mathrm {Diam} \, {\mathcal {C}}(G,X)\)and we shall rely upon the   Atlas [7] for the names of conjugacy classes of G. Our main result is as follows.

Theorem 1

Let G be isomorphic to one of \(^3D_4(2), E_6(2), ^2F_4(2)'\) and \(F_4(2)\).

(i):

The sizes of the discs \(\Delta _i(t)\) are listed in Table 1and the G-conjugacy classes of tx for \(x \in \Delta _i(t), i \in \mathbb {N}\) are given in Table 2.

(ii):

If \((G,X) = (E_6(2),2A), (E_6(2),2B), (^2F_4(2)',2A), (F_4(2),2A), (F_4(2),2B)\) or \( (F_4(2),2C)\), then \(\mathrm {Diam} \, {\mathcal {C}}(G,X)\)= 2.

(iii):

If \((G,X) = (^3D_4(2),2A), (^3D_4(2),2B), (E_6(2),2C), (^2F_4(2)',2B)\) or \((F_4(2),2D)\), then \(\mathrm {Diam} \, {\mathcal {C}}(G,X)\)= 3.

Table 1 Disc sizes for \({\mathcal {C}}(G,X), G \cong \;^3D_4(2), E_6(2), ^2F_4(2)', F_4(2)\)

These results were obtained computationally with the aid of Magma [6] , Gap [16] and the OnLine Atlas [18]. In the course of these calculations we determined the \(C_G(t)\)-orbits on X (where \(C_G(t)\) is acting by conjugation). Representatives, in Magma format, for each of these orbits are to be found as downloadable files at [13], as they may be of value in other investigations of these groups. In Sect. 2 we also collate information on the action of \(C_G(t)\) on X. In particular, we give the \(C_G(t)\)-orbit sizes on each (non-empty) \(X_C\), \(X_C\) being defined below.

We observe that some “obvious” groups are missing in this paper. First \(G_2(2)'\) being isomorphic to \(PSU_3(3)\) means it is covered in [8]. As for \(G \cong \;^2E_6(2)\), the cases \(X = 2A\) and \(X=2B\) are done in [1], while there are partial results in the case \(X=2C\). Likewise [1] also has partial results for \(E_7(2)\). While \(E_8(2)\) is far and away beyond current computational capabilities.

We remark on the graphs studied here. First we note that as the outer automorphism of \(F_4(2)\) interchanges the two classes 2A and 2B, we have that \( {\mathcal {C}}(F_4(2),2A)\) and \({\mathcal {C}}(F_4(2),2B)\) are isomorphic graphs. A very noteworthy consequence of the present work is that the distance between t and x in \({\mathcal {C}}(G,X)\) is almost always determined by the G-class to which tx belongs. The exceptions are \(G\cong E_6(2), X=2C\) with \(tx \in 12B \cup 12E \cup 12F\) and \(G \cong F_4(2), X = 2D\) and \(tx \in 12A \cup 12B \cup 12I \cup 12J.\) See Table 2 for more details—for example when \(G \cong F_4(2), X=2D\) and \(tx \in 12I \cup 12J\) each of 12I and 12J breaks into thirteen \(C_G(t)\)-orbits, 12 of size 294,912 and one of size 1,179,648 with those of size 294,912 being in \(\Delta _2(t) \) and the one of size 1,179,648 in \(\Delta _3(t) \).

A word or two about the information in our tables is required. As mentioned we employ the class names given in the Atlas though we make some modifications. First we suppress the “slave” notation. So, for example, the classes \(7B*2, 7C*4\) of \(^3D_4(2)\) are just written as 7B, 7C, respectively. Secondly we compress the letter part of a class name when we mean the union of these classes and their letters are in alphabetical sequence. As an example, in Table 2, for \(G \cong F_4(2)\) and \(X = 2D\), 8AF is short-hand for \(8A \cup 8B \cup 8C \cup 8D \cup 8E \cup 8F\).

Let C be a G-conjugacy class and define

$$\begin{aligned} X_C = \{x\in X \; | \; tx \in C\}. \end{aligned}$$

It is clear that \(X_C\) will either be empty or be a union of certain \(C_G(t)\)-orbits of X (where G acts upon X by conjugation). In locating which discs of t contain the vertices in \(X_C\) we sometimes need to determine how \(X_C\) breaks into \(C_G(t)\)-orbits. Also of interest to us is the size of \(X_C\) which leads us to class structure constants. Class structure constants are the sizes of sets

$$\begin{aligned} \{(g_1, g_2) \in C_1 \times C_2 \; | \; g_1g_2=g\} \end{aligned}$$

where \(C_1, C_2, C_3\) are G-conjugacy classes and g is a fixed element of \(C_3\). Now these constants can be calculated directly from the complex character table of G which are recorded in the Atlas and are available electronically in the standard libraries of the computer algebra package Gap [16]. If we take \(C_1=C\), \(C_2=X=C_3\) and \(g=t\), then in this case

$$\begin{aligned} |X_C| = \frac{|G|}{|C_G(t)||C_G(h)|} \sum _{r=1}^k \frac{\chi _r(h)\chi _r(t)\overline{\chi _{r}(t)}}{\chi _r(1)}, \end{aligned}$$

where h is a representative from C and \(\chi _1, \ldots , \chi _k\) the complex irreducible characters of G.

Table 2 The conjugacy class of products tx for \(x \in \Delta _i(t)\)

2 \(C_G(t)\)-Orbits on X

As promised, we tabulate the sizes of the \(C_G(t)\)-orbits in their action upon \(X_C\) where C is a G-conjugacy class for which \(X_C\) is non-empty. In the ensuing tables we use an exponential notation to indicate the multiplicity of a particular size. Thus in the table for \(G \cong \;^3D_4(2)\) with \(X = 2B\) the entry \(4^6,24^{12}\) next to 2B is telling us that \(X_{2B}\) is the union of eighteen \(C_G(t)\)-orbits, six of which have size 4 and twelve of which have size 24. Still looking at the same table, the entry 512, 1536 next to 9AC indicates that each of \(X_{9A}, X_{9B}\) and \(X_{9C}\) is the union of two \(C_G(t)\)-orbits of sizes 512 and 1536. We give details of the permutation ranks in Table 3.

Table 3 Class sizes and permutation rank

2.1 \(G \cong \;^3D_4(2)\)

\(X = 2A\)

2A

18

3A

512

4A

288

\(X=2B\)

2A

3, 24

2B

\(4^6, 24^{12}\)

3A

384

3B

512

4A

\(24^5, 192\)

4B

\(24^{10}, 192\)

4C

\(384^6\)

6A

1536

6B

\(384^6\)

7AC

512

7D

3072

8A

\(384^6\)

8B

\(384^8\)

9AC

512, 1536

12A

\(1536^2\)

13AC

3072

14AC

1536

18AC

\(1536^2\)

21AC

3072

28AC

\(1536^2\)

2.2 \(G \cong E_6(2)\)

\(X = 2A\)

2A

2790

2B

124992

3A

2097152

4B

2856960

\(X=2B\)

2A

63, \(2160^2\)

2B

\(56, 4320, 30240^2,\)

\(30720^2, 64512,120960\)

2C

\(60480^2, 725760^2,\)

967680

3A

2359296

3B

16777216

4A

774144

4B

\(725760, 967680^2,\)

\(2211840^2\)

4C

\(1935360^4, 3870720^4,\)

\(4423680^4, 7741440^2\)

4D

\(7864320^2, 8847360\)

4E

\(46448640^2\)

4F

\(2064384^2, 61931520^4\)

4J

\(123863040^2\)

4K

743178240

5A

939524096

6A

\(70778880^2\)

6D

990904320

6F

1056964608

8C

\(990904320^2\)

12B

\(1132462080^{2}\)

    

\(X = 2C\)

2A

3, 84, 1536, 2016

2B

168, 224, 2016, 5376, 

\(8064^2,10752^2,16128,\)

\(32256^2,43008,86016\)

2C

\(96^2,5376,16128^3,32256^4\)

\(36864^4,64512^4,86016^4\)

\(129024^3,25048^3,1032192\)

3A

917504, 1572864

3B

29360128

3C

134217728

4A

1536, 21504, 32256

\(36864^3,64512^3,86016\)

786432, 1032192

4B

\(1536^2,16128,32256^4\)

\(36864,43008,64512^4\)

\(86016,129024^3,258048^2\)

\(786432,1032192^3\)

4C

\(64512^4,129024^6,258048^2\)

\(516096^{12},688128^2,1032192^6\)

\(2064384^8,4128768^4\)

4D

1032192, 1376256, 

\( 2752512^2, 11010048,\)

16515072

4E

\(258048^4,516096^{10},\)

\(1032192^{10},2064384^{12},\)

\(4128768^{22},8257536^2\)

33030144

4F

\(1032192^{2},2064384^{2},\)

\(2752512^2, 4128768^{8},\)

\(5505024^2,16515072^8,\)

\(33030144^6\)

4G

\(4128768^{2}, 8257536^2, \)

\(16515072^4, 33030144^3,\)

\(66060288^2\)

4H

\(3748736^2,66060288^2\)

4I

\(11010048^2,16515072^2,\)

\(33030144^6, 66060288^7,\)

88080384, 264241152

4J

\(1376256^2,2064384^{2}\),

\(4128768^{6}, 8257536^{16},\)

\(16515072^{10},33030144^{22}\)

\(66060288^{10}\)

4K

\(4128768,8257536^{6}, \)

\(16515072^{13} , 33030144^{12},\)

\( 66060288^{8}, 264241152\)

5A

234881024, 1409286144

6A

\(2752512,33030144^{3},\)

\(44040192^2\)

6B

402653184

6C

528482304, 704643072

6D

\( 1835008, 66060288^{4}, \)

\(88080384^3, 132120576^4,\)

176160768, 264241152, 

528482304

6E

\( 37748736^2, 66060288^{2}, \)

\(88080384^2,132120576^2,\)

\( 528482304^2\)

6F

88080384, 352321536

528482304, 704643072

1056964608

6G

2818572288

6H

\(1056964608^2,4227858432\)

6I

8455716864

7C

805306368

7D

3221225472

8A

\( 1572864^2, 33030144^{2},\)

\( 37748736^2, 66060288^{2},\)

\( 88080384^2, 132120576^2\)

\(528482304^2\)

8B

\(37748736^2, 44040192^2,\)

\(66060288^{2}, 88080384^2,\)

\(132120576^2, 528482304^2\)

8C

\(16515072^2, 33030144^{2},\)

\( 66060288^{8} , 88080384^2,\)

\( 132120576^{12}, 264241152^{10}\)

8D

\( 132120576^2,264241152^{20}\)

\( 1056964608^2 \)

8E

\(176160768^2,528482304^4,\)

\( 2113929216^2\)

8F

\(2113929216^5\)

8G

\(26441152^{4},528482304^4,\)

\( 105664608^{12} \)

8H

\(2113929216^3\)

8I

\(427858432^6\)

8J

\( 1056964608^{2} , 2113929216^6,\)

\( 4227858432^4\)

9A

22548578304

9B

3221225472, 9663676416

10A

\( 2818572288^2, 4227858432\)

10B

\(2818572288, 4227858432^2\)

8455716864, 16911433728

12A

\(402653184^2\)

12B

\( 132120576^2, 528482304^6\)

12C

\(264241152^8, 528482304^4\)

\( 1056964608^{16}\)

12D

\(1409286144^2,2113929216^4, \)

4227858432

12E

\( 2818572288, 4227858432^3\)

12F

4227858432, 8455716864

12G

5637144576

12H

\(352321536^2, 2113929216^6\)

\(4227858432^4\)

12I

\(8455716864^2\)

12J

\(1056964608^{2}, 2113929216^6,\)

\(4227858432^8\)

12K

\(1409286144^2,4227858432^4 \)

\(8455716864^4\)

12L

16911433728

12M

\(16911433728^2\)

12P

\(16911433728^2\)

13A

19327352832

14G

16911433728

14H

9663676416

15C

22548578304

15D

7516192768, 22548578304

16A

\(8455716864^4\)

16C

\(16911433728^4\)

17A

45097156608

17B

45097156608

18A

\(9663676416^2\)

18B

67645734912

20A

\(16911433728^2\)

20B

\(33822867456^4\)

21G

19327352832

21H

45097156608

24A

\(8455716864^8\)

24B

\(16911433728^4\)

24C

\(33822867456^2\)

24D

\(33822867456^2\)

28K

\(9663676416^2\)

28L

33822867456

30E

\(22548578304^2\)

30F

67645734912

  

2.3 \(G \cong \;^2F_4(2)'\)

\(X = 2A\)

2A

10

2B

80

4C

640

5A

1024

\(X = 2B\)

2A

3, 12

2B

\(12^3, 48^2\)

3A

\(256^2\)

4A

\(192^2\)

4B

\(96^2\)

4C

\(96, 192^2\)

5A

768

6A

\(768^2\)

8CD

\(384^2\)

12AB

\(768^2\)

13AB

1536

  

2.4 \(G \cong F_4(2)\)

\(X = 2A\)

2A

270

2C

2016

3A

32768

4C

34560

\(X = 2B\)

2B

270

2C

2016

3A

32768

4D

34560

\(X = 2C\)

2AB

30

2C

\(32^2,180, 1920^2\)

2D

\(720^2, 960^4, 11520\)

3AB

32768

4AB

15360

4CD

11520

4F

\(1024^2\)

4JK

\(30720^2\)

4L

737280

4M

\(184320^2\)

5A

1048576

6GH

983040

\(X = 2D\)

2AB

\(3, 12, 72^2, 192\)

2C

\(9, 12^2, 24^2, 72^4,\)

\(144^7, 192^2, 576^4\)

2D

\(24^4, 144^{29}, 576^{24}\)

\(1152^{16}, 9216\)

3AB

2048, 6144, 24576

3C

262144

4AB

\(192, 576^8, 1152^4\) 9216, 12288

4CD

\(144^4, 192^3, 288^4\)

\(576^{13}, 1152^2, 2304^4,\)

\(4608^4,12288\)

4EF

\(576^4,1536^4\)

\(2304^4, 9216^8\)

4GH

\(2304^4, 4608^6, 9216^2\)

\(18432^4, 73728\)

4I

\(9216^{14}, 18432^8\)

\(36864^4, 73728^2\)

4JK

\(1152^4, 1536^4, 2304^4\)

\(4608^{20}, 9216^{16}, 18432^{22}\)

4L

\(9216^9, 36864^8\)

\(147456^2\)

4M

\(2304^{2}, 4608^{12}, 9216^{30}\)

\(18432^{36}, 36864^{2}\)

4N

\(147456^{4}\)

4O

\(36864^{12},147456^{4}\)

5A

\(196608^{2}, 589824\)

6AB

\(6144^{2}, 24576^2, 73728^3\)

6CD

\(36864^2, 49152^2\)

\(73728^3, 294912\)

6EF

786432

6GH

\(12288,36864^2,49152^2\)

\(73728^7,147456^2,294912\)

6IJ

\(73728^8,147456^4,294912^4\)

6K

2359296

7AB

1572864

8A

\(294912^4\)

8B

\(147456^8,294912^4\)

8CF

\(24576^2,73728^{10}\)

\(147456^4, 294912^4\)

8G

\(589824^2\)

8HI

\(294912^6\)

8J

\(589824^{16}\)

8K

\(589824^6\)

9AB

1572864, 4718592

10AB

\(589824^2, 1179648^2\)

10C

\(589824^2, 1179648^4\)

12AB

\(294912^4,1179648\)

12CD

\(786432^2\)

12EH

\(98304^2, 294912^4,589824^4\)

12IJ

\(294912^{12},1179648\)

12KL

\(2359296^2\)

12MN

\(589824^{14}\)

12O

\(2359296^4\)

13A

9437184

14AB

4718592

15AB

1572864, 4718592

16AB

\(2359296^4\)

17AB

9437184

18AB

\( 4718592^2\)

20AB

\(2359296^4\)

21AB

9437184

24AD

\( 2359296^4\)

28AB

\(4718592^2\)

30AB

\(4718592^2\)