Skip to main content
Log in

Flag-Transitive Block Designs and Finite Simple Exceptional Groups of Lie Type

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

In this article, we study 2-designs with \(\gcd (r,\lambda )=1\) admitting a flag-transitive almost simple automorphism group with socle a finite simple exceptional group of Lie type. We obtain four infinite families of such designs and provide some examples in each of these families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alavi, S.H., Bayat, M., Daneshkhah, A.: Flag-transitive block designs and unitary groups. Submitted arxiv:1909.08546

  2. Alavi, S.H., Bayat, M., Daneshkhah, A.: Finite exceptional groups of Lie type and symmetric designs. Submitted arxiv:1702.01257

  3. Alavi, S.H., Bayat, M., Daneshkhah, A.: Symmetric designs admitting flag-transitive and point-primitive automorphism groups associated to two dimensional projective special groups. Des. Codes Cryptogr. 79, 337–351 (2016). https://doi.org/10.1007/s10623-015-0055-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Alavi, S.H., Daneshkhah, A., Mouseli, F.: A classification of flag-transitive block designs. Submitted arxiv:1911.06175

  5. Beth, T., Jungnickel, D., Lenz, H.: Design Theory. Volume I, Encyclopedia of Mathematics and its Applications, vol. 69, 2nd edn. Cambridge University Press, Cambridge (1999). https://doi.org/10.1017/CBO9780511549533

    Book  MATH  Google Scholar 

  6. Biliotti, M., Montinaro, A.: On flag-transitive symmetric designs of affine type. J. Combin. Des. 25(2), 85–97 (2017). https://doi.org/10.1002/jcd.21533

    Article  MathSciNet  MATH  Google Scholar 

  7. Bray, J.N., Holt, D.F., Roney-Dougal, C.M.: The Maximal Subgroups of the Low-dimensional Finite Classical Groups. London Mathematical Society Lecture Note Series, vol. 407. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139192576. (With a foreword by Martin Liebeck)

    Book  MATH  Google Scholar 

  8. Buekenhout, F., Delandtsheer, A., Doyen, J.: Finite linear spaces with flag-transitive groups. J. Combin. Theory Ser. A 49(2), 268–293 (1988). https://doi.org/10.1016/0097-3165(88)90056-8

    Article  MathSciNet  MATH  Google Scholar 

  9. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, Eynsham (1985). (Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray)

    MATH  Google Scholar 

  10. Dembowski, P.: Finite Geometries. Springer, New York (1968). https://books.google.com/books?id=1wPzoAEACAAJ

  11. Dixon, J.D., Mortimer, B.: Permutation Groups, Graduate Texts in Mathematics, vol. 163. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-0731-3

    Book  MATH  Google Scholar 

  12. Downs, M., Jones, G.A.: Möbius inversion in Suzuki groups and enumeration of regular objects. In: Symmetries in graphs, maps, and polytopes, Springer Proc. Math. Stat., vol. 159, pp. 97–127. Springer, [Cham] (2016). https://doi.org/10.1007/978-3-319-30451-9_5

  13. Kantor, W.M.: Homogeneous designs and geometric lattices. J. Combin. Theory Ser. A 38(1), 66–74 (1985). https://doi.org/10.1016/0097-3165(85)90022-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Kleidman, P., Liebeck, M.: The Subgroup Structure of the Finite Classical Groups. London Mathematical Society Lecture Note Series, vol. 129. Cambridge University Press, Cambridge (1990). https://doi.org/10.1017/CBO9780511629235

    Book  MATH  Google Scholar 

  15. Kleidman, P.B.: The finite flag-transitive linear spaces with an exceptional automorphism group. In: Finite geometries and combinatorial designs (Lincoln, NE, 1987), Contemp. Math., vol. 111, pp. 117–136. Amer. Math. Soc., Providence, RI (1990). https://doi.org/10.1017/CBO9780511629235

  16. Korableva, V.V.: Parabolic permutation representations of groups \({E}_6(q)\) and \({E}_7(q)\). In: Combinatorial and Computational Methods in Mathematics [in Russian], pp. 160–189. Omsk Univ., Omsk (1999)

  17. Lander, E.S.: Symmetric Designs: an Algebraic Approach. London Mathematical Society Lecture Note Series, vol. 74. Cambridge University Press, Cambridge (1983). https://doi.org/10.1017/CBO9780511662164

    Book  Google Scholar 

  18. Liebeck, M.W., Saxl, J.: The finite primitive permutation groups of rank three. Bull. Lond. Math. Soc. 18(2), 165–172 (1986). https://doi.org/10.1112/blms/18.2.165

    Article  MathSciNet  MATH  Google Scholar 

  19. Liebeck, M.W., Saxl, J., Seitz, G.: On the overgroups of irreducible subgroups of the finite classical groups. Proc. Lond. Math. Soc. 50(3), 507–537 (1987). https://doi.org/10.1112/plms/s3-50.3.426

    Article  MathSciNet  MATH  Google Scholar 

  20. Lüneburg, H.: Some remarks concerning the Ree groups of type \((G_{2})\). J. Algebra 3, 256–259 (1966). https://doi.org/10.1016/0021-8693(66)90014-7

    Article  MathSciNet  MATH  Google Scholar 

  21. Pierro, E.: The Möbius function of the small Ree groups. Australas. J. Combin. 66, 142–176 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Saxl, J.: On finite linear spaces with almost simple flag-transitive automorphism groups. J. Combin. Theory Ser. A 100(2), 322–348 (2002). https://doi.org/10.1006/jcta.2002.3305

    Article  MathSciNet  MATH  Google Scholar 

  23. Seitz, G.M.: Flag-transitive subgroups of Chevalley groups. Ann. Math. 2(97), 27–56 (1973)

    Article  MathSciNet  Google Scholar 

  24. The GAP Group.: GAP—Groups, Algorithms, and Programming, Version 4.7.9 (2015). http://www.gap-system.org

  25. Tian, D., Zhou, S.: Flag-transitive 2-\((v, k,\lambda )\) symmetric designs with sporadic socle. J. Combin. Des. 23(4), 140–150 (2015). https://doi.org/10.1002/jcd.21385. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcd.21385

  26. Zhan, X., Zhou, S.: Flag-transitive non-symmetric 2-designs with \((r,\lambda )=1\) and sporadic socle. Des. Codes Cryptogr. 81(3), 481–487 (2016). https://doi.org/10.1007/s10623-015-0171-6

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhou, S., Wang, Y.: Flag-transitive non-symmetric 2-designs with \((r,\lambda )=1\) and alternating socle. Electron. J. Combin. 22(2), Paper 2.6, 15 (2015). https://doi.org/10.37236/4664.

  28. Zhu, Y., Guan, H., Zhou, S.: Flag-transitive 2-(v, k, \(\lambda \)) symmetric designs with (k, \(\lambda \)) = 1 and alternating socle. Front. Math. China 10(6), 1483–1496 (2015). https://doi.org/10.1007/s11464-015-0480-0

    Article  MathSciNet  MATH  Google Scholar 

  29. Zieschang, P.H.: Flag transitive automorphism groups of 2-designs with \((r,\lambda )=1\). J. Algebra 118(2), 369–375 (1988). https://doi.org/10.1016/0021-8693(88)90027-0. http://www.sciencedirect.com/science/article/pii/0021869388900270

Download references

Acknowledgements

The author would like to thank anonymous referees for providing us helpful and constructive comments and suggestions. The author are also grateful to Cheryl E. Praeger and Alice Devillers for supporting his visit to UWA (The University of Western Australia) during July-September 2019. He would also like to thank Alexander Bors for introducing reference [21].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hassan Alavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavi, S.H. Flag-Transitive Block Designs and Finite Simple Exceptional Groups of Lie Type. Graphs and Combinatorics 36, 1001–1014 (2020). https://doi.org/10.1007/s00373-020-02161-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-020-02161-0

Keywords

Mathematics Subject Classification

Navigation