Skip to main content
Log in

Triangle Packings and Transversals of Some \(K_{4}\)-Free Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Tuza’s Conjecture asserts that the minimum number \(\tau _{\varDelta }'(G)\) of edges of a graph G whose deletion results in a triangle-free graph is at most 2 times the maximum number \(\nu _{\varDelta }'(G)\) of edge-disjoint triangles of G. The complete graphs \(K_{4}\) and \(K_{5}\) show that the constant 2 would be best possible. Moreover, if true, the conjecture would be essentially tight even for \(K_{4}\)-free graphs. In this paper, we consider several subclasses of \(K_{4}\)-free graphs. We show that the constant 2 can be improved for them and we try to provide the optimal one. The classes we consider are of two kinds: graphs with edges in few triangles and graphs obtained by forbidding certain odd-wheels. We translate an approximate min-max relation for \(\tau _{\varDelta }'(G)\) and \(\nu _{\varDelta }'(G)\) into an equivalent one for the clique cover number and the independence number of the triangle graph of G and we provide \(\theta \)-bounding functions for classes related to triangle graphs. In particular, we obtain optimal \(\theta \)-bounding functions for the classes \({\textit{Free}}(K_{5}, \text{ claw, } \text{ diamond })\) and \({\textit{Free}}(P_{5}, \text{ diamond }, K_{2,3})\) and a \(\chi \)-bounding function for the class \((\text{ banner, } \text{ odd-hole }, \overline{K_{1, 4}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. A triangle-transversal of G is a transversal of the triangle hypergraph of G.

  2. The long-standing open problem known as Ryser’s Conjecture and formulated in [22] asserts that \(\tau (\mathscr {H}) \le (r - 1)\nu (\mathscr {H})\), for any r-uniform r-partite hypergraph \(\mathscr {H}\). Recall that a hypergraph is r-uniform if every edge has size r, and r-partite if the vertex set can be partitioned into r classes such that each edge contains at most one vertex for each class.

  3. Recall that the set of vertices of the dual hypergraph \(\mathscr {H}(G)^{*}\) is \(\left\{ y_{S} : S \in \mathscr {H}(G)\right\} \), where the \(y_{S}\) are pairwise distinct. Moreover, for each vertex x of \(\mathscr {H}(G)\), the set \(\left\{ y_{S} : S \in \mathscr {H}(G), \ x \in S\right\} \) is an edge of \(\mathscr {H}(G)^{*}\).

  4. Note that a graph G with this property is necessarily \(K_{4}\)-free.

  5. The trivial algorithm was improved by Roussopoulos [36] and Lehot [32], who showed that recognition is possible in linear time.

  6. By substituting \(\theta \) with \(\chi \) and \(\alpha \) with \(\omega \), we obtain the notion of \(\chi \)-boundedness and the two are complementary, in the sense that \(\mathcal {G}\) is \(\chi \)-bounded if and only if \(\{\overline{G} : G \in \mathcal {G}\}\) is \(\theta \)-bounded.

References

  1. Aharoni, R.: Ryser’s conjecture for tripartite \(3\)-graphs. Combinatorica 21(1), 1–4 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anand, P., Escuadro, H., Gera, R., Hartke, S.G., Stolee, D.: On the hardness of recognizing triangular line graphs. Discret. Math. 312(17), 2627–2638 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beineke, L.W.: Characterizations of derived graphs. J. Comb. Theory 9(2), 129–135 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brandstädt, A.: (\({P}_{5}\), diamond)-free graphs revisited: structure and linear time optimization. Discret. Appl. Math. 138(1–2), 13–27 (2004)

    Article  MATH  Google Scholar 

  5. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164(1), 51–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: \({K}_{4}\)-free graphs with no odd holes. J. Comb. Theory Ser. B 100(3), 313–331 (2010)

    Article  MATH  Google Scholar 

  7. Conforti, M., Corneil, D.G., Mahjoub, A.R.: \({K}_{i}\)-covers I: complexity and polytopes. Discret. Math. 58(2), 121–142 (1986)

    Article  MATH  Google Scholar 

  8. Conforti, M., Corneil, D.C., Mahjoub, A.R.: \({K}_{i}\)-covers. II. \({K}_{i}\)-perfect graphs. J. Graph Theory 11(4), 569–584 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cook, C.R.: Two characterizations of interchange graphs of complete \(m\)-partite graphs. Discret. Math. 8(4), 305–311 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Erdős, P.: Graph theory and probability. Can. J. Math. 11, 34–38 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fraughnaugh, K., Locke, S.C.: \(11/30\) (Finding large independent sets in connected triangle-free \(3\)-regular graphs). J. Comb. Theory Ser. B 65(1), 51–72 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fronček, D.: Locally linear graphs. Math. Slovaca 39(1), 3–6 (1989)

    MathSciNet  MATH  Google Scholar 

  13. Gallai, T.: Kritische graphen II. A Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közleményei 8, 373–395 (1963)

    MathSciNet  MATH  Google Scholar 

  14. Gallai, T.: Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum Hungarica 18(1), 25–66 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gyárfás, A.: Problems from the world surrounding perfect graphs. Zastosowania Matematyki 19(3–4), 413–441 (1987)

    MathSciNet  MATH  Google Scholar 

  16. Gyárfás, A., Sebő, A., Trotignon, N.: The chromatic gap and its extremes. J. Comb. Theory Ser. B 102(5), 1155–1178 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gyárfás, A., Li, Z., Machado, R., Sebő, A., Thomassé, S., Trotignon, N.: Complements of nearly perfect graphs. J. Comb. 4(3), 299–310 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Haxell, P., Kostochka, A., Thomassé, S.: Packing and covering triangles in \({K}_{4}\)-free planar graphs. Graphs Comb. 28(5), 653–662 (2012)

    Article  MATH  Google Scholar 

  19. Haxell, P.E.: Packing and covering triangles in graphs. Discret. Math. 195(1–3), 251–254 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Haxell, P.E., Kostochka, A.V., Thomassé, S.: A stability theorem on fractional covering of triangles by edges. Eur. J. Comb. 33(5), 799–806 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Heckman, C.C.: On the tightness of the \(\frac{5}{14}\) independence ratio. Discret. Math. 308(15), 3169–3179 (2008)

    Article  MATH  Google Scholar 

  22. Henderson, J.R.: Permutation decomposition of \((0,1)\)-matrices and decomposition transversals. Ph.D. thesis, California Institute of Technology (1971)

  23. Henning, M.A., Löwenstein, C., Rautenbach, D.: Independent sets and matchings in subcubic graphs. Discret. Math. 312(11), 1900–1910 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hoàng, C.T.: On the structure of (banner, odd hole)-free graphs. J. Graph Theory (2018). https://doi.org/10.1002/jgt.22258

    Google Scholar 

  25. Joos, F.: Independence and matching number in graphs with maximum degree 4. Discret. Math. 323, 1–6 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Krivelevich, M.: On a conjecture of Tuza about packing and covering of triangles. Discret. Math. 142(1–3), 281–286 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lakshmanan, S.A., Bujtás, C., Tuza, Z.: Small edge sets meeting all triangles of a graph. Graphs Comb. 28(3), 381–392 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lakshmanan, S.A., Bujtás, C., Tuza, Z.: Generalized line graphs: Cartesian products and complexity of recognition. Electron. J. Comb. 22(3), P3.33 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Lakshmanan, S.A., Bujtás, C., Tuza, Z.: Induced cycles in triangle graphs. Discret. Appl. Math. 209, 264–275 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Le, V.B.: Gallai graphs and anti-Gallai graphs. Discret. Math. 159(1–3), 179–189 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Le, V.B., Prisner, E.: Iterated \(k\)-line graphs. Graphs Comb. 10(2), 193–203 (1994)

    MathSciNet  MATH  Google Scholar 

  32. Lehot, P.G.H.: An optimal algorithm to detect a line graph and output its root graph. J. ACM 21(4), 569–575 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  33. Munaro, A.: Bounded clique cover of some sparse graphs. Discret. Math. 340(9), 2208–2216 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Puleo, G.J.: Tuza’s Conjecture for graphs with maximum average degree less than \(7\). Eur. J. Comb. 49, 134–152 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Radziszowski, S.P.: Small Ramsey numbers. Electron. J. Comb. DS1 (2014)

  36. Roussopoulos, N.D.: A max \(\{m, n\}\) algorithm for determining the graph \({H}\) from its line graph \({G}\). Inf. Process. Lett. 2(4), 108–112 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  37. Scott, A., Seymour, P.: Induced subgraphs of graphs with large chromatic number. I. Odd holes. J. Comb. Theory Ser. B 121, 68–84 (2016)

  38. Staton, W.: Some Ramsey-type numbers and the independence ratio. Trans. Am. Math. Soc. 256, 353–370 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stehlík, M.: Critical graphs with connected complements. J. Comb. Theory Ser. B 89(2), 189–194 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tuza, Z.: A conjecture on triangles of graphs. Graphs Comb. 6(4), 373–380 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  41. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referees for valuable comments improving the structure of the paper and simplifying the proof of Theorem 13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Munaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munaro, A. Triangle Packings and Transversals of Some \(K_{4}\)-Free Graphs. Graphs and Combinatorics 34, 647–668 (2018). https://doi.org/10.1007/s00373-018-1903-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-018-1903-y

Keywords

Navigation