Advertisement

Graphs and Combinatorics

, Volume 34, Issue 3, pp 395–414 | Cite as

Graphs with at Most Three Distance Eigenvalues Different from \(-1\) and \(-2\)

  • Xueyi Huang
  • Qiongxiang Huang
  • Lu Lu
Article

Abstract

Let G be a connected graph on n vertices, and let D(G) be the distance matrix of G. Let \(\partial _1(G)\ge \partial _2(G)\ge \cdots \ge \partial _n(G)\) denote the eigenvalues of D(G). In this paper, we characterize all connected graphs with \(\partial _{3}(G)\le -1\) and \(\partial _{n-1}(G)\ge -2\). In the course of this investigation, we determine all connected graphs with at most three distance eigenvalues different from \(-1\) and \(-2\).

Keywords

Distance matrix The third largest distance eigenvalue The second least distance eigenvalue 

Mathematics Subject Classification

05C50 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11671344, 11701492). We are extremely grateful to the anonymous referees for their constructive comments and suggestions, which helped us to improve the manuscript.

References

  1. 1.
    Alazemi, A., Andelić, M., Koledin, T., Stanić, Z.: Distance-regular graphs with small number of distinct distance eigenvalues. Linear Algebra Appl. 531, 83–97 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cheng, X.-M., Gavrilyuk, A.L., Greaves, G.R.W., Koolen, J.H.: Biregular graphs with three eigenvalues. Eur. J. Comb. 56, 57–80 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cioabă, S.M., Haemers, W.H., Vermette, J.R.: The graphs with all but two eigenvalues equal to $-2$ or $0$. Des. Codes Cryptogr. 84(1–2), 153–163 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cioabă, S.M., Haemers, W.H., Vermette, J.R., Wong, W.: The graphs with all but two eigenvalues equal to $\pm 1$. J. Algebraic Combin. 41(3), 887–897 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Godsil, C.D., Royle, G.: Algebraic Graph Theory. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Haemers, W.H.: Eigenvalue techniques in design and graph theory. Ph.D. thesis, Technical University Eindhoven (1979)Google Scholar
  7. 7.
    Hamburger, H.L., Grimshaw, M.E.: Linear transformations in $n$-dimensional vector space. Cambridge University Press, London (1951)zbMATHGoogle Scholar
  8. 8.
    Huang, X.-Y., Huang, Q.-X.: On regular graphs with four distinct eigenvalues. Linear Algebra Appl. 512, 219–233 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jin, Y.-L., Zhang, X.-D.: Complete multipartite graphs are determined by their distance spectra. Linear Algebra Appl. 448, 285–291 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Koolen, J.H., Hayat, S., Iqbal, Q.: Hypercubes are determined by their distance spectra. Linear Algebra Appl. 505, 97–108 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Li, D., Meng, J.-X.: The graphs with the least distance eigenvalue at least $-\frac{1+\sqrt{17}}{2}$. Linear Algebra Appl. 493, 358–380 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lin, H.-Q.: On the least distance eigenvalue and its applications on the distance spread. Discrete Math. 338, 868–874 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lin, H.-Q., Hong, Y., Wang, J.-F., Shu, J.-L.: On the distance spectrum of graphs. Linear Algebra Appl. 439, 1662–1669 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lin, H.-Q., Zhai, M.-Q., Gong, S.-C.: On graphs with at least three distance eigenvalues less than $-1$. Linear Algebra Appl. 458, 548–558 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Liu, R.-F., Xue, J., Guo, L.-T.: On the second largest distance eigenvalue of a graph. Linear Multilinear Algebra 65, 1011–1021 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lu, L., Huang, Q.-X., Huang, X.-Y.: The graphs with exactly two distance eigenvalues different from $-1$ and $-3$. J. Algebraic Comb. 45(2), 629–647 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mohammadian, A., Tayfeh-Rezaie, B.: Graphs with four distinct Laplacian eigenvalues. J. Algebraic Comb. 34(4), 671–682 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rowlinson, P.: On graphs with just three distinct eigenvalues. Linear Algebra Appl. 507, 462–473 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Seinsche, D.: On a property of the class of $n$-colorable graphs. J. Comb. Theory Ser. B 16, 191–193 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Van Dam, E.R., Spence, E.: Small regular graphs with four eigenvalues. Discrete Math. 189, 233–257 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Xing, R.-D., Zhou, B.: On the second largest distance eigenvalue. Linear Multilinear Algebra 64, 1887–1898 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Yu, G.-L.: On the least distance eigenvalue of a graph. Linear Algebra Appl. 439, 2428–2433 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mathematics and Systems ScienceXinjiang UniversityÜrümqiPeople’s Republic of China

Personalised recommendations