Skip to main content
Log in

The graphs with exactly two distance eigenvalues different from \(-1\) and \(-3\)

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

In this paper, we completely characterize the graphs with third largest distance eigenvalue at most \(-1\) and smallest distance eigenvalue at least \(-3\). In particular, we determine all graphs whose distance matrices have exactly two eigenvalues (counting multiplicity) different from \(-1\) and \(-3\). It turns out that such graphs consist of three infinite classes, and all of them are determined by their distance spectra. We also show that the friendship graph is determined by its distance spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abdollahi, A., Janbaz, S., Oboudi, M.R.: Graphs cospectral with a friendship graph or its complement. Trans. Comb. 2, 37–52 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Cioabǎ, S.M., Haemers, W.H., Vermette, J.R., Wong, W.: The graphs with all but two eigenvalues equal to \(\pm \)1. J. Algebraic Comb. 41, 887–897 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. Cambrige University Press, New York (2010)

    MATH  Google Scholar 

  4. Das, K.C.: Proof of conjectures on adjacency eigenvalues of graphs. Discret. Math. 313, 19–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Günthard, H.H., Primas, H.: Zusammenhang von graphentheorie und MO-theorie von molekeln mit systemen konjugierter bindungen. Helv. Chim. Acta 39, 1645–1653 (1956)

    Article  Google Scholar 

  6. Jin, Y.L., Zhang, X.D.: Complete multipartite graphs are determined by their distance spectra. Linear Algebra Appl. 448, 285–291 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lin, H., Zhai, M.Q., Gong, S.C.: On graphs with at least three ditance eigenvalues less than \(-1\). Linear Algebra Appl. 458, 548–558 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Seinsche, D.: On a property of the class of \(n\)-colorable graphs. J. Comb. Theory Ser. B 16, 191–193 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  9. van Dam, E.R., Haemers, W.H.: Which graphs are determined by their spectrum? Linear Algebra Appl. 373, 241–272 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. van Dam, E.R., Haemers, W.H.: Developments on spectral characterizations of graphs. Discret. Math. 309, 576–586 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, J.F., Belardo, F., Huang, Q.X., Borovicanin, B.: On the two largest \(Q\)-eigenvalues of graphs. Discret. Math. 310, 2858–2866 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yu, G.L.: On the least distance eigenvalue of a graph. Linear Algebra Appl. 439, 2428–2433 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referees for their helpful comments and suggestions that have improved our results in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiongxiang Huang.

Additional information

Supported by the National Natural Science Foundation of China (11671344, 11261059, 11531011).

Appendix: Spectra of graphs in \({\mathcal {G}}[-3\le \partial _n,\partial _3\le -1]\)

Appendix: Spectra of graphs in \({\mathcal {G}}[-3\le \partial _n,\partial _3\le -1]\)

Graphs

Distance Spectra

f(x)

\(S(0,1)=K_1\vee (K_5\cup K_1)\)

\([7.66,-0.71,(-1)^4,-2.96]\)

\(S(1,0)=K_2\vee (K_5\cup K_1)\)

\([8.47,-0.47,(-1)^5,-3]\)

\(S(m,n)=(K_5\cup K_1)\vee (mK_2\cup nK_1)\,(m,n\ne 0)\)

\([\partial _1,\partial _2,(-1)^{m+4},(-2)^{n-1},\partial _3,(-3)^m]\)

[\(x^3-(2n+4m+2)x^2+(2n+8m-28)x+(32m+24n-40)\)]

\(S(m,0)=(K_5\cup K_1)\vee mK_2\,(m\ge 2)\)

\([\partial _1,\partial _2,(-1)^{m+4},(-3)^m]\)

[\(-x^2+(4m+4)x+20-16m\)]

\(S(0,n)=(K_5\cup K_1)\vee nK_1\,(n\ge 2)\)

\([\partial _1,\partial _2,(-1)^4,\partial _3,(-2)^{n-1}]\)

[\(x^3-(2n+2)x^2+(2n-28)x+(24n-40)\)]

\(K_r\vee T_1=K_r\vee (K_4\cup K_1)\)

\([\partial _1,\partial _2,(-1)^{r+2},\partial _3](\partial _3>-3)\)

[\(x^3-(r+2)x^2-(2r+19)x+(3r-16)\)]

\(K_r\vee T_2=K_r\vee (K_3\cup 2K_1)\)

\([\partial _1,\partial _2,(-1)^{r+1},-2,\partial _3](\partial _3>-3)\)

[\(x^3-(r+3)x^2-(r+24)x+(6r-20)\)]

\(K_r\vee T_3=K_r\vee (K_3\cup K_1)\)

\([\partial _1,\partial _2,(-1)^{r+1},\partial _3](\partial _3>-3)\)

[\(x^3-(r+1)x^2-(2r+14)x+(2r-12)\)]

\(K_r\vee T_4(m,n)=K_r\vee (mK_2\cup nK_1)\,(n,m\ne 0)\)

\([\partial _1,\partial _2,(-1)^{m+r-1},(-2)^{n-1},\partial _3,(-3)^{m-1}]\)

[\(x^3+(6-2n-4m-r)x^2+(2mr-8n-5r-12m+nr+11)x-(8m+6n+6r-4mr-3nr-6)\)]

\(K_r\vee T_4(m,0)=K_r\vee mK_2\,(m\ge 2)\)

\([\partial _1,\partial _2,(-1)^{m+r-1},(-3)^{m-1}]\)

[\(x^2+(4-r-4m)x+(2mr-4m-3r+3)\)]

\(K_r\vee T_4(0,n)=K_r\vee nK_1\,(n\ge 2)\)

\([\partial _1,\partial _2,(-1)^{r-1},(-2)^{n-1}]\)

[\(x^2+(3-r-2n)x+(nr-2n-2r+2)\)]

\(T_1\vee T_1=(K_4\cup K_1)\vee (K_4\cup K_1)\)

\([10.71,1,(-1)^6,-2.71,-3]\)

\(T_1\vee T_2=(K_4\cup K_1)\vee (K_3\cup 2K_1)\)

\([11.32,1.46,(-1)^5,-2,-2.78,-3]\)

\(T_1\vee T_3=(K_4\cup K_1)\vee (K_3\cup K_1)\)

\([9.65,0.85,(-1)^5,-2.6,-2.9]\)

\(T_1\vee T_4(m,n)=(K_4\cup K_1)\vee (mK_2\cup nK_1)\,(m,n\ne 0)\)

\([\partial _1,\partial _2,(-1)^{m+3},(-2)^{n-1},\partial _3,\partial _4,(-3)^{m-1}]\)

[\(x^4+(2-2n-4m)x^3-(6m+5n+25)x^2+(42m+22n-98)x+76m+57n-96\)]

\(T_1\vee T_4(m,0)=(K_4\cup K_1)\vee mK_2\,(m\ge 2)\)

\([\partial _1,\partial _2,(-1)^{m+3},\partial _3,(-3)^{m-1}]\)

[\(x^3-4mx^2+(2m-25)x+38m-48\)]

\(T_1\vee T_4(0,n)=(K_4\cup K_1)\vee nK_1\,(n\ge 2)\)

\([\partial _1,\partial _2,(-1)^3,(-2)^{n-1},\partial _3](\partial _3>-3)\)

[\(x^3-(2n+1)x^2+(n-22)x+19n-32\)]

\(T_2\vee T_2=(K_3\cup 2K_1)\vee (K_3\cup 2K_1)\)

\([11.87,2,(-1)^4,(-2)^2,-2.87,-3]\)

\(T_2\vee T_3=(K_3\cup 2K_1)\vee (K_3\cup K_1)\)

\([10.34,1.25,(-1)^4,-2,-2.63,-2.95]\)

\(T_2\vee T_4(m,n)=(K_3\cup 2K_1)\vee (mK_2\cup nK_1)\,(m,n\ne 0\))

\([\partial _1,\partial _2,(-1)^{m+2},(-2)^n,\partial _3,\partial _4,(-3)^{m-1}]\)

[\(x^4+(1-2n-4m)x^3-(2m+3n+34)x^2+(64m+35n-124)x+104m+78n-120\)]

\(T_2\vee T_4(m,0)=(K_3\cup 2K_1)\vee mK_2\,(m\ge 2)\)

\([\partial _1,\partial _2,(-1)^{m+2},-2,\partial _3,(-3)^{m-1}]\)

[\(x^3-(4m+1)x^2+(6m-32)x+52m-60\)]

\(T_2\vee T_4(0,n)=(K_3\cup 2K_1)\vee nK_1\,(n\ge 2)\)

\([\partial _1,\partial _2,(-1)^2,(-2)^n,\partial _3](\partial _3>-3)\)

[\(x^3-(2n+2)x^2+(3n-28)x+26n-40\)]

\(T_3\vee T_3=(K_3\cup K_1)\vee (K_3\cup K_1)\)

\([8.57,0.73,(-1)^4,-2.57,-2.73]\)

\(T_3\vee T_4(m,n)=(K_3\cup K_1)\vee (mK_2\cup nK_1)\,(m,n\ne 0)\)

\([\partial _1,\partial _2,(-1)^{m+2},(-2)^{n-1},\partial _3,\partial _4,(-3)^{m-1}]\)

[\(x^4+(3-2n-4m)x^3-(8m+6n+16)x^2+(28m+14n-72)x+56m+42n-72\)]

\(T_3\vee T_4(m,0)=(K_3\cup K_1)\vee mK_2\,(m\ge 2)\)

\([\partial _1,\partial _2,(-1)^{m+2},\partial _3,(-3)^{m-1}]\)

[\(x^3-(4m-1)x^2-18x+28m-36\)]

\(T_3\vee T_4(0,n)=(K_3\cup K_1)\vee nK_1\,(n\ge 2)\)

\([\partial _1,\partial _2,(-1)^2,(-2)^{n-1},\partial _3](\partial _3>-3)\)

[\(x^3-2nx^2-16x+14n-24\)]

\(T_4(m_1,n_1)\vee T_4(m_2,n_2)=(m_1K_2\cup n_1K_1)\vee (m_2K_2\cup n_2K_1)(m_1,m_2,n_1,n_2\ne 0\))

\([\partial _1,\partial _2,(-1)^{m_1+m_2},(-2)^{n_1+n_2-2},\partial _3,\partial _4,(-3)^{m_1+m_2-2}]\)

[\(x^4+(10-4(m_1+m_2)-2(n_1+n_2))x^3+(12m_1m_2-28(m_1+m_2)-16(n_1+n_2) +6(m_1n_2+m_2n_1)+37)x^2+(48m_1m_2-64(m_1+m_2)-42(n_1+n_2)+30(m_1n_2+m_2n_1)+18n_1n_2+60)x -(48(m_1+m_2-m_1m_2)+36(n_1+n_2)-36(m_1n_2+m_2n_1)-27n_1n_2+36)\)]

\(T_4(m_1,n_1)\vee T_4(m_2,0)=(m_1K_2\cup n_1K_1)\vee m_2K_2 (m_1,n_1\ne 0,m_2\ge 2)\)

\([\partial _1,\partial _2,(-1)^{m_1+m_2},(-2)^{n_1-1},\partial _3,(-3)^{m_1+m_2-2}]\)

[\(x^3+(8-4(m_1+m_2)-2n_1)x^2+(12m_1m_2-20(m_1+m_2)-12n_1+6m_2n_1+21)x -24(m_1+m_2)+18m_2n_1+24m_1m_2-18n_1+18\)]

\(T_4(m_1,n_1)\vee T_4(0,n_2)=(m_1K_2\cup n_1K_1)\vee n_2K_1 (m_1,n_1\ne 0,n_2\ge 2)\)

\([\partial _1,\partial _2,(-1)^{m_1},(-2)^{n_1+n_2-2},\partial _3,(-3)^{m_1-1}]\)

[\(x^3+(7-2(n_1+n_2)-4m_1)x^2+(6m_1n_2-10(n_1+n_2)-16m_1+3n_1n_2+16)x-12(n_1+n_2)+12m_1n_2+9n_1n_2-16m_1+12\)]

\(T_4(m_1,0)\vee T_4(m_2,0)=m_1K_2\vee m_2K_2\,(m_1,m_2\ge 2)\)

\([\partial _1,\partial _2,(-1)^{m_1+m_2},(-3)^{m_1+m_2-2}]\)

\([x^2+(6-4(m_1+m_2))x-12(m_1+m_2)+12m_1m_2+9]\)

\(T_4(m_1,0)\vee T_4(0,n_2)=m_1K_2\vee n_2K_1\,(m_1,n_2\ge 2)\)

\([\partial _1,\partial _2,(-1)^{m_1},(-2)^{n_2-1},(-3)^{m_1-1}]\)

\([x^2+(6-4(m_1+m_2))x-12(m_1+m_2)+12m_1m_2+9]\)

\(T_4(0,n_1)\vee T_4(0,n_2)=n_1K_2\vee n_2K_1\,(n_1,n_2\ge 2)\)

\([\partial _1,\partial _2,(-2)^{n_1+n_2-2}]\)

\([x^2+(4-2(n_1+n_2))x-4(n_1+n_2)+3n_1n_2+4]\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Huang, Q. & Huang, X. The graphs with exactly two distance eigenvalues different from \(-1\) and \(-3\) . J Algebr Comb 45, 629–647 (2017). https://doi.org/10.1007/s10801-016-0718-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-016-0718-2

Keywords

Mathematics Subject Classification

Navigation