Skip to main content
Log in

The Simultaneous Metric Dimension of Families Composed by Lexicographic Product Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let \(\mathcal{G}\) be a graph family defined on a common (labeled) vertex set V. A set \(S\subseteq V\) is said to be a simultaneous metric generator for \(\mathcal{G}\) if for every \(G\in \mathcal{G}\) and every pair of different vertices \(u,v\in V\) there exists \(s\in S\) such that \(d_{G}(s,u)\ne d_{G}(s,v)\), where \(d_{G}\) denotes the geodesic distance. A simultaneous adjacency generator for \(\mathcal{G}\) is a simultaneous metric generator under the metric \(d_{G,2}(x,y)=\min \{d_{G}(x,y),2\}\). A minimum cardinality simultaneous metric (adjacency) generator for \(\mathcal{G}\) is a simultaneous metric (adjacency) basis, and its cardinality the simultaneous metric (adjacency) dimension of \(\mathcal{G}\). Based on the simultaneous adjacency dimension, we study the simultaneous metric dimension of families composed by lexicographic product graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Adjacency generators were called adjacency resolving sets in [12].

  2. For any pair of vertices xy belonging to different connected components of G we can assume that \(d_G(x,y)=\infty \) and so \(d_{G,t}(x,y)=t\) for any t greater than or equal to the maximum diameter of a connected component of G.

References

  1. Brigham, R.C., Chartrand, G., Dutton, R.D., Zhang, P.: Resolving domination in graphs. Math. Bohem. 128(1), 25–36 (2003). http://mb.math.cas.cz/mb128-1/3.html

  2. Brigham, R.C., Dutton, R.D.: Factor domination in graphs. Discret. Math. 86(1–3), 127–136 (1990). doi:10.1016/0012-365X(90)90355-L. http://www.sciencedirect.com/science/article/pii/0012365X9090355L

  3. Chartrand, G., Saenpholphat, V., Zhang, P.: The independent resolving number of a graph. Math. Bohem. 128(4), 379–393 (2003). http://mb.math.cas.cz/mb128-4/4.html

  4. Estrada-Moreno, A., Ramírez-Cruz, Y., Rodríguez-Velázquez, J.A.: On the adjacency dimension of graphs. Appl. Anal. Discret. Math. 10 (2016) (to appear). doi:10.2298/AADM151109022E

  5. Estrada-Moreno, A., Rodríguez-Velázquez, J.A., Yero, I.G.: The \(k\)-metric dimension of a graph. Appl. Math. Inf. Sci. 9(6), 2829–2840 (2015). http://naturalspublishing.com/files/published/05a21265hsd7y2

  6. Estrada-Moreno, A., Yero, I.G., Rodríguez-Velázquez, J.A.: The \(k\)-metric dimension of corona product graphs. Bull. Malays. Math. Sci. Soc. (2014) (to appear). http://math.usm.my/bulletin/pdf/acceptedpapers/2014-01-033-R1

  7. Fernau, H., Rodríguez-Velázquez, J.A.: On the (adjacency) metric dimension of corona and strong product graphs and their local variants: combinatorial and computational results (2013). arXiv:1309.2275 [math.CO]. http://arxiv-web3.library.cornell.edu/abs/1309.2275

  8. Fernau, H., Rodríguez-Velázquez, J.A.: Notions of metric dimension of corona products: combinatorial and computational results. In: Computer Science-Theory and Applications. Lecture Notes in Computer Science, vol. 8476, pp. 153–166. Springer, Cham (2014)

  9. Hammack, R., Imrich, W., Klavžar, S.: Handbook of product graphs, 2 edn. In: Discrete Mathematics and its Applications. CRC Press (2011). http://www.crcpress.com/product/isbn/9781439813041

  10. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Comb. 2, 191–195 (1976). http://www.ams.org/mathscinet-getitem?mr=0457289

  11. Imran, M., ul Haq Bokhary, S.A., Ahmad, A., Semaničová-Feňovčíková, A.: On classes of regular graphs with constant metric dimension. Acta Math. Sci. 33(1), 187–206 (2013). doi:10.1016/S0252-9602(12)60204-5. http://www.sciencedirect.com/science/article/pii/S0252960212602045

  12. Jannesari, M., Omoomi, B.: The metric dimension of the lexicographic product of graphs. Discret. Math. 312(22), 3349–3356 (2012). doi:10.1016/j.disc.2012.07.025. http://www.sciencedirect.com/science/article/pii/S0012365X12003317

  13. Johnson, M.: Structure-activity maps for visualizing the graph variables arising in drug design. J. Biopharm. Stat. 3(2), 203–236 (1993). doi:10.1080/10543409308835060. http://www.tandfonline.com/doi/abs/10.1080/10543409308835060

  14. Johnson, M.: Browsable structure-activity datasets. In: Carbó-Dorca, R., Mezey, P. (eds.) Advances in Molecular Similarity, chap. 8, pp. 153–170. JAI Press Inc, Stamford (1998). http://books.google.es/books?id=1vvMsHXd2AsC

  15. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discret. Appl. Math. 70(3), 217–229 (1996). doi:10.1016/0166-218X(95)00106-2. http://www.sciencedirect.com/science/article/pii/0166218X95001062

  16. Okamoto, F., Phinezy, B., Zhang, P.: The local metric dimension of a graph. Math. Bohem. 135(3), 239–255 (2010). http://dml.cz/dmlcz/140702

  17. Ramírez-Cruz, Y., Oellermann, O.R., Rodríguez-Velázquez, J.A.: Simultaneous resolvability in graph families. Electron. Notes Discret. Math. 46, 241–248 (2014). doi:10.1016/j.endm.2014.08.032. http://www.sciencedirect.com/science/article/pii/S157106531400033X

  18. Ramírez-Cruz, Y., Oellermann, O.R., Rodríguez-Velázquez, J.A.: The simultaneous metric dimension of graph families. Discret. Appl. Math. (2015). doi:10.1016/j.dam.2015.06.012. http://www.sciencedirect.com/science/article/pii/S0166218X1500298X

  19. Sebö, A., Tannier, E.: On metric generators of graphs. Math. Oper. Res. 29(2), 383–393 (2004). doi:10.1287/moor.1030.0070

  20. Slater, P.J.: Leaves of trees. Congr. Numerantium 14, 549–559 (1975)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ramírez-Cruz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Cruz, Y., Estrada-Moreno, A. & Rodríguez-Velázquez, J.A. The Simultaneous Metric Dimension of Families Composed by Lexicographic Product Graphs. Graphs and Combinatorics 32, 2093–2120 (2016). https://doi.org/10.1007/s00373-016-1675-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-016-1675-1

Keywords

Mathematics Subject Classification

Navigation