Skip to main content
Log in

A New Simple Proof of the Aztec Diamond Theorem

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The Aztec diamond of order n is the union of lattice squares in the plane intersecting the square \(|x|+|y|<n\). The Aztec diamond theorem states that the number of domino tilings of this shape is \(2^{n(n+1)/2}\). It was first proved by Elkies et al. (J. Algebraic Comb. 1(2):111–132, 1992). We give a new simple proof of this theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Note that the field of arrows is always defined on all of \(A_{n+1}\), even for a tiling of \(A_n\).

  2. In this correspondence, the nodes in this paper correspond to odd vertices in [4].

References

  1. Bosio, F., van Leeuwen M.A.A.: A bijection proving the Aztec diamond theorem by combing lattice paths. Electron. J. Comb. 20(4) (2004). (paper 24, 30 pp.)

  2. Brualdi, R.A., Kirkland, S.: Aztec diamonds and digraphs, and Hankel determinants of Schröder numbers. J. Comb. Theory Ser. B 94(2), 334–351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Elkies, N., Kuperberg, G., Larsen, M., Propp, J.: Alternating-sign matrices and domino tilings (Part I). J. Algebraic Comb. 1(2), 111–132 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Elkies, N., Kuperberg, G., Larsen, M., Propp, J.: Alternating-sign matrices and domino tilings (Part II). J. Algebraic Comb. 1(3), 219–234 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eu, S.-P., Fu, T.-S.: A simple proof of the Aztec diamond theorem. Electron. J. Comb. 12 (2005). (research paper 18, 8 pp., electronic)

  6. Kamioka, S.: Laurent biorthogonal polynomials, q-Naryana polynomials and domino tilings of the Aztec diamonds. J. Comb. Theory Ser. A 123, 14–29 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kasteleyn, P.W.: The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice. Physica 27(12), 1209–1225 (1961)

    Article  MATH  Google Scholar 

  8. Kenyon, R., Okounkov, A.: What is \(\dots \) a dimer? Not. Am. Math. Soc. 52(3), 342–343 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Kokhas, K.: Domino tilings of Aztec diamonds and squares. In: Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 360(Teoriya Predstavlenii, Dinamicheskie Sitemy, Kombinatornye Metody. XVI), pp. 180–230, 298 (2008)

  10. Kuo, E.H.: Applications of graphical condensation for enumerating matchings and tilings. Theor. Comput. Sci. 319, 29–57 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lai, T. :A generalization of Aztec diamond theorem, part I. Electron. J. Comb. 21(1) (2014). (paper 1.51, 19)

  12. Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics—an exact result. Philos. Mag. (8) 6, 1061–1063 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yan, W., Zhang, F.: Graphical condensation for enumerating perfect matchings. J. Comb. Theory Ser. A 110, 113–125 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Grieser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fendler, M., Grieser, D. A New Simple Proof of the Aztec Diamond Theorem. Graphs and Combinatorics 32, 1389–1395 (2016). https://doi.org/10.1007/s00373-015-1663-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-015-1663-x

Keyword

Mathematics Subject Classification

Navigation