Skip to main content
Log in

On the Facial Thue Choice Number of Plane Graphs Via Entropy Compression Method

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let G be a plane graph. A vertex-colouring \(\varphi \) of G is called facial non-repetitive if for no sequence \(r_1 r_2 \ldots r_{2n}\), \(n\ge 1\), of consecutive vertex colours of any facial path it holds \(r_i=r_{n+i}\) for all \(i=1,2,\ldots ,n\). A plane graph G is facial non-repetitively k -choosable if for every list assignment \(L:V\rightarrow 2^{\mathbb {N}}\) with minimum list size at least k there is a facial non-repetitive vertex-colouring \(\varphi \) with colours from the associated lists. The facial Thue choice number, \(\pi _{fl}(G)\), of a plane graph G is the minimum number k such that G is facial non-repetitively k-choosable. We use the so-called entropy compression method to show that \(\pi _{fl} (G)\le c \varDelta \) for some absolute constant c and G a plane graph with maximum degree \(\varDelta \). Moreover, we give some better (constant) upper bounds on \(\pi _{fl} (G)\) for special classes of plane graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. A polynomial used to solve recurrence relation, see [5].

  2. By Cardano’s formula, \(\lambda _0=\root 3 \of {2}+\root 3 \of {4}+1\), \(\lambda _1=1-\frac{1}{2}(\root 3 \of {2}+\root 3 \of {4})+\frac{\sqrt{3}}{2}(\root 3 \of {4}-\root 3 \of {2})i\) and \(\lambda _2=\overline{\lambda _1}\).

References

  1. Allouche, J.-P., Shallit, J.: Automatic Sequences, Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  2. Alon, N., Grytzuk, J., Hałuszczak, M., Riordan, O.: Non-repetitive colorings of graphs. Random Struct. Algorithms 21, 336–346 (2002)

    Article  MATH  Google Scholar 

  3. Barát, J., Czap, J.: Facial nonrepetitive vertex coloring of plane graphs. J. Graph Theory 77, 115–121 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bean, D.R., Ehrenfeucht, A., McNulty, G.F.: Avoidable patterns in strings of symbols. Pac. J. Math. 85, 261–294 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, W.W.L.: Discrete Mathematics. Macquarie University, Sydney (2008)

    Google Scholar 

  6. Cooke, R.L.: Classical Algebra: Its Nature. Origins and Uses. Wiley, Hoboken, NJ (2008)

    Book  MATH  Google Scholar 

  7. Currie, J.D.: Open problems in pattern avoidance. Am. Math. Mon. 100, 790–793 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Currie, J.D.: There are ternary circular square-free words of length \(n\). Electron. J. Comb. 9, #N10, 1–7 (2002)

  9. Czerwiński, S., Grytczuk, J.: Nonrepetitive colorings of graphs. Electron. Notes Discrete Math. 28, 453–459 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dujmović, V., Joret, G., Kozik, J., Wood, D.R.: Nonrepetitive colouring via entropy compression. Combinatorica (2015). doi:10.1007/s00493-015-3070-6

  11. Fabrici, I., Jendrol’, S., Vrbjarova, M.: Unique-maximum edge-colouring of plane graphs with respect to faces. Discrete Appl. Math. 185, 239–243 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fiorenzi, F., Ochem, P., Ossona de Mendez, P., Zhu, X.: Thue choosability of trees. Discrete Appl. Math. 159, 2045–2049 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grytczuk, J.: Nonrepetitive colorings of graphs—a survey. Int. J. Math. Math. Sci. 2007, 74639 (2007). doi:10.1155/2007/74639

  14. Grytczuk, J.: Nonrepetitive graph coloring. In: Graph Theory in Paris, Trends in Mathematics, pp. 209–218, Birkhauser (2007)

  15. Grytczuk, J.: Thue type problems of graphs, points and numbers. Discrete Math. 308, 4419–4429 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grytczuk, J., Kozik, J., Micek, P.: New approach to nonrepetitive sequences. Random Struct. Algorithms 42, 214–225 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grytczuk, J., Przybyło, J., Zhu, X.: Nonrepetitive list colourings of paths. Random Struct. Algorithms 38, 162–173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harant, J., Jendrol’, S.: Nonrepetitive vertex colourings of graphs. Discrete Math. 312, 374–380 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Havet, F., Jendrol’, S., Soták, R., Škrabul’áková, E.: Facial non-repetitive edge colouring of plane graphs. J. Graph Theory 66, 38–48 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jendrol’, S., Škrabul’áková, E.: Facial non-repetitive edge-colouring of semiregular polyhedra. Acta Universitatis Mattia Belii Ser. Math. 15, 37–52 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983)

    MATH  Google Scholar 

  22. Przybyło, J.: On the facial Thue choice index via entropy compression. J. Graph Theory 77, 180–189 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schreyer, J., Škrabul’áková, E.: On the facial Thue choice index of plane graphs. Discrete Math. 312, 1713–1721 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Thue, A.: Über unendliche Zeichenreichen. Norske Vid Selsk. Skr. I Mat. Nat. Kl. Christiana 7, 1–22 (1906)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Škrabul’áková.

Additional information

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-14-0892, this work was also supported by the Slovak Research and Development Agency under the contract No. APVV-0482-11, by the Grants VEGA 1/0529/15, VEGA 1/0908/15 and KEGA 040TUKE4/2014. Research partially supported by the Polish Ministry of Science and Higher Education.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Przybyło, J., Schreyer, J. & Škrabul’áková, E. On the Facial Thue Choice Number of Plane Graphs Via Entropy Compression Method. Graphs and Combinatorics 32, 1137–1153 (2016). https://doi.org/10.1007/s00373-015-1642-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-015-1642-2

Keywords

Mathematics Subject Classification

Navigation