Skip to main content
Log in

Vašek Chvátal: A Very Short Introduction

  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

This is the story of a man named Vašek.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aardal, K.: 7397-city traveling salesman instance solved—another layer of icing on the cake. Optima 45, 7–8 (1995)

    Google Scholar 

  • Aardal, K.: TSP Cake. Optima 61, 20–21 (1999)

  • Althaus, E., Polzin, T., Daneshmand, S. V.: Improving linear programming approaches for the Steiner tree problem. Lect. Notes Comput. Sci. 2647, 1–14 (2003)

    Google Scholar 

  • Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding cuts in the TSP (a preliminary report). DIMACS Technical Report 95-05. DIMACS, Rutgers University, New Brunswick, NJ, USA, 1995

  • Applegate, D. L., Bixby, R. E., Chvátal, V., Cook, W. J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)

  • Avis, D., Chvátal, V.: Notes on Bland’s pivoting rule. Math. Program. Study 8, 24–34 (1978)

    Google Scholar 

  • Bauer, D., Broersma, H. J., Veldman, H. J.: Not every 2-tough graph is Hamiltonian. Discrete Appl. Math. 99, 1–3 (2000)

    Google Scholar 

  • Berge, C.: Some classes of perfect graphs. In: Six papers on Graph Theory, pp. 1–21. Indian Stastical Institute, Calcutta (1963)

  • Booth, K.S., Lueker, G. S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)

    Google Scholar 

  • Bondy, J. A., Chvátal, V.: A method in graph theory. Discrete Math. 15, 111–135 (1976)

    Google Scholar 

  • Caprara, A., Fischetti, M.: \(\{0,\frac{1}{2}\}\) -Chvátal–Gomory cuts. Math. Program. 74, 221–235 (1996)

  • Caprara, A., Fischetti, M., Letchford, A. N.: On the separation of maximally violated mod-k cuts. Math. Program. 87, 37–56 (2000)

    Google Scholar 

  • Chvátal, V.: On finite and countable rigid graphs and tournaments. Comment. Math. Univ. Carol. 6, 429–438 (1965)

    Google Scholar 

  • Chvátal, V.: The smallest triangle-free 4-chromatic 4-regular graph. J. Comb. Theory 9, 93–94 (1970)

    Google Scholar 

  • Chvátal, V.: Hypergraphs and Ramseyian theorems. Proc. Am. Math. Soc. 27, 434–440 (1971)

  • Chvátal, V.: On Hamilton’s ideals. J. Comb. Theory B 12, 163–168 (1972)

    Google Scholar 

  • Chvátal, V.: Monochromatic paths in edge-colored graphs. J. Comb. Theory B 13, 69–70 (1972)

    Google Scholar 

  • Chvátal, V.: Edmonds polytopes and weakly Hamiltonian graphs. Math. Program. 5, 29–40 (1973)

    Google Scholar 

  • Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math. 4, 305–337 (1973)

    Google Scholar 

  • Chvátal, V.: Flip-flops in hypoHamiltonian graphs. Can. Math. Bull. 16, 33–41 (1973)

    Google Scholar 

  • Chvátal, V.: Tough graphs and Hamiltonian circuits. Discrete Math. 5, 215–218 (1973)

    Google Scholar 

  • Chvátal V.: Intersecting families of edges in hypergraphs having the hereditary property. Hypergraph Seminar Proceedings of the First Working Seminar, Ohio State University, Columbus, Ohio. Lect. Notes Math. 411, 61–68 (1974)

  • Chvátal, V.: On certain polytopes associated with graphs. J. Comb. Theory B 18, 138–154 (1975)

    Google Scholar 

  • Chvátal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory B 18, 39–41 (1975)

    Google Scholar 

  • Chvátal, V.: Some linear programming aspects of combinatorics. Congr. Numer. 13, 2–30 (1975)

    Google Scholar 

  • Chvátal, V.: Determining the stability number of a graph. SIAM J. Comput. 6, 643–662 (1977)

    Google Scholar 

  • Chvátal V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4, 233–235 (1979)

    Google Scholar 

  • Chvátal V.: Hard knapsack problems. Oper. Res. 28, 1402–1411 (1980)

    Google Scholar 

  • Chvátal V.: Linear Programming. W.H. Freeman, New York (1983)

  • Chvátal, V.: Cutting-plane proofs and the stability number of a graph. Report 84326, University of Bonn, pp. 10 (1984)

  • Chvátal, V.: Notes on perfect graphs. In: Pulleyblank WR (ed.) Progress in Combinatorial Optimization, pp. 107–115. Academic, New York (1984)

  • Chvátal, V.: In praise of Claude Berge. Discrete Math. 165/166, 3–9 (1997)

    Google Scholar 

  • Chvátal, V.: Star-cutsets and perfect graphs. J. Comb. Theory B 39, 189–199 (1985)

    Google Scholar 

  • Chvátal, V.: Claude Berge 5.6.1926-30.6.2002. Graphs Comb. 19, 1–6 (2003)

  • Chvátal, V., Cook, W.: The discipline number of a graph. Discrete Math. 86, 191–198 (1990)

    Google Scholar 

  • Chvátal, V., Cook, W., Hartmann, M.: On cutting-plane proofs in combinatorial optimization. Linear Algebra Appl. 114/115, 455–499 (1989)

    Google Scholar 

  • Chvátal, V., Erdős P.: A note on Hamiltonian circuits. Discrete Math. 2, 111–113 (1972)

    Google Scholar 

  • Chvátal, V., Harary, F.: Generalized Ramsey theory for graphs. I. Diagonal numbers. Periodica Mathematica Hungarica. J. János Bolyai Math. Soc. 3, 115–124 (1973)

    Google Scholar 

  • Chvátal, V., Harary, F.: Generalized Ramsey theory for graphs. II. Small diagonal numbers. Proc. Am. Math. Soc. 32, 389–394 (1972)

    Google Scholar 

  • Chvátal, V., Harary, F.: Generalized Ramsey theory for graphs. III. Small off-diagonal numbers. Pacific J. Math. 41, 335–345 (1972)

    Google Scholar 

  • Chvátal, V., Klarner, D. A., Knuth, D. E.: Selected Combinatorial Research Problems. Computer Science Department, Stanford University, CS-TR-72-292, 1972

  • Chvátal, V., Lovász, L.: Every directed graph has a semi-kernel. Hypergraph Seminar Proceedings of the First Working Seminar, Ohio State University, Columbus, Ohio. Lect. Notes Math. 411, 175 (1974)

  • Chvátal, V., Reed, B.: Mick gets some (the odds are on his side). In: Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, pp. 620–627. IEEE Computer Society Press, Washington (1992)

  • Chvátal, V., Sbihi, N.: Bull-free Berge graphs are perfect. Graphs Combin. 3, 127–139 (1987)

    Google Scholar 

  • Chvátal, V., Szemerédi, E.: Many hard examples for resolution. J. Assoc. Comput. Mach. 35, 759–768 (1988)

    Google Scholar 

  • Cook, S. A.: The complexity of theorem-proving procedures. 3rd ACM Symposium on Theory of Computing, pp. 151–158, 1970

  • Crowder, H., Padberg, M. W.: Solving large-scale symmetric travelling salesman problems to optimality. Manage. Sci. 26, 495–509 (1980)

    Google Scholar 

  • Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. Oper. Res. 2, 393–410 (1954)

    Google Scholar 

  • Deza, M., Laurent, M.: Geometry of Cuts and Metrics. Springer, Berlin (1997)

  • Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. J. Res. Natl. Bur. Stand. 69B, 125–130 (1965)

    Google Scholar 

  • Espinoza, D. G.: On Linear programming, Integer Programming and Cutting Planes. Ph.D. Thesis. School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA, 2006

  • Fleischer, L., Tardos, É.: Separating maximally violated comb inequalities in planar graphs. Math. Oper. Res. 24, 130–148 (1999)

    Google Scholar 

  • Gomory, R. E.: An algorithm for integer solutions to linear programs. Princeton IBM Math Report, 1958

  • Gomory, R. E.: The traveling salesman problem. In: Proceedings of the IBM Scientific Computing Symposium on Combinatorial Problems, pp. 93–121. IBM, White Plains (1966)

  • Grötschel, M.: On the symmetric travelling salesman problem: solution of a 120-city problem. Math. Program. Study 12, 61–77 (1980)

    Google Scholar 

  • Grötschel, M., Holland, O.: Solution of large-scale symmetric travelling salesman problems. Math. Program. 51, 141–202 (1991)

    Google Scholar 

  • Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 189–197 (1981)

    Google Scholar 

  • Grötschel, M., Padberg, M. W.: On the symmetric traveling salesman problem. I: Inequalities. Math. Program. 16, 265–280 (1979)

    Google Scholar 

  • Hayward, R.: Weakly triangulated graphs. J. Comb. Theory B 39, 200–208 (1985)

    Google Scholar 

  • Hayward, R.: The story of perfectly orderable graphs. Graphs Comb. (this volume)

  • Hoàng, C.: Some properties of minimal imperfect graphs. Discrete Math. 160, 165–175 (1996)

    Google Scholar 

  • Hong, S.: A Linear Programming Approach for the Traveling Salesman Problem. Ph.D. Thesis. The Johns Hopkins University, Baltimore, MD, USA, 1972

  • Karp, R. M.: Reducibility among combinatorial problems. In: Miller, R. E., et al. (eds.) Complexity of Computer Computations. (1972)

  • Khachian, L. G.: A polynomial time algorithm in linear programming. Doklady Akademiiia Nauk SSSR 244, 1093–1096 (1980)

    Google Scholar 

  • Letchford, A. N.: Separating a superclass of comb inequalities in planar graphs. Math. Oper. Res. 25, 443–454 (2000)

    Google Scholar 

  • Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discrete Math. 2, 253–267 (1972)

    Google Scholar 

  • Lovász, L.: A characterization of perfect graphs. J. Comb. Theory B 13, 95–98 (1972)

    Google Scholar 

  • Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Rev. 33, 60–100 (1991)

    Google Scholar 

  • Reed, B.: Skew partitions in perfect graphs. Discrete Appl. Math. (in press)

  • Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3, 376–384 (1991)

    Google Scholar 

  • Reinelt, G., Wenger, K. M.: Maximally violated mod-p cuts for the capacitated vehicle-routing problem. INFORMS J. Comput. 18, 466–479 (2006)

    Google Scholar 

  • Padberg, M.: Plenary Lecture, XVI International Symposium on Mathematical Programming, Lausanne, August (1997)

  • Shannon, C. E.: The zero error capacity of a noisy channel. Institute of Radio Engineers. Trans. Inf. Theory IT-2, 8–19 (1956)

    Google Scholar 

  • Tucker, A.: A structure theorem for the consecutive 1’s property. J. Comb. Theory B 12, 153–162 (1972)

    Google Scholar 

  • Underground, P.: Graphs with Hamiltonian squares. Discrete Math. 21, 323 (1978)

    Google Scholar 

  • Yamamoto, Y., Kubo, M.: Invitation to the Traveling Salesman Problem. Asakura, Tokyo, 1997 (in Japanese)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Avis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avis, D., Bondy, A., Cook, W. et al. Vašek Chvátal: A Very Short Introduction. Graphs and Combinatorics 23 (Suppl 1), 41–65 (2007). https://doi.org/10.1007/s00373-007-0721-4

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-007-0721-4

Keywords

Navigation