Skip to main content
Log in

Fairing-PIA: progressive-iterative approximation for fairing curve and surface generation

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The fairing curves and surfaces are used extensively in geometric design, modeling, and industrial manufacturing. However, the majority of conventional fairing approaches, which lack sufficient parameters to improve fairness, are based on energy minimization problems. In this study, we develop a novel progressive-iterative approximation method for the fairing curve and surface generation (fairing-PIA). Fairing-PIA is an iteration method that can generate a series of curves (surfaces) by adjusting the control points of B-spline curves (surfaces). In fairing-PIA, each control point is endowed with an individual weight. Thus, the fairing-PIA has many parameters to optimize the shapes of curves and surfaces. Not only a fairing curve (surface) can be generated globally through fairing-PIA, but also the curve (surface) can be improved locally. Moreover, we prove the convergence of the developed fairing-PIA and show that the conventional energy minimization fairing model is a special case of fairing-PIA. Finally, numerical examples indicate that the proposed method is effective and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li, W., Krist, S.: Spline-based airfoil curvature smoothing and its applications. J. Aircr. 42(4), 1065–1074 (2005)

    Article  Google Scholar 

  2. Sariöz, E.: An optimization approach for fairing of ship hull forms. Ocean Eng. 33(16), 2105–2118 (2006)

    Article  Google Scholar 

  3. Westgaard, G., Nowacki, H.: A process for surface fairing in irregular meshes. Comput. Aided Geom. Design 18(7), 619–638 (2001)

    Article  MathSciNet  Google Scholar 

  4. Hashemian, A., Hosseini, S.F.: An integrated fitting and fairing approach for object reconstruction using smooth nurbs curves and surfaces. Comput. Math. Appl. 76(7), 1555–1575 (2018)

    Article  MathSciNet  Google Scholar 

  5. Gilimyanov, R.F.: Recursive method of smoothing curvature of path in path planning problems for wheeled robots. Autom. Remote. Control. 72(7), 1548–1556 (2011)

    Article  Google Scholar 

  6. Song, B., Wang, Z., Zou, L.: An improved pso algorithm for smooth path planning of mobile robots using continuous high-degree bézier curve, Appl. Soft Comput. 100 (2021)

  7. Hagen, H., Bonneau, G.-P.: Variational design of smooth rational bézier curves. Comput. Aided Geom. Design 8(5), 393–399 (1991)

    Article  MathSciNet  Google Scholar 

  8. Wang, W., Zhang, Y.: Wavelets-based nurbs simplification and fairing: Computational geometry and analysis. Comput. Methods Appl. Mech. Eng. 199(5–8), 290–300 (2010)

    Article  ADS  Google Scholar 

  9. Kjellander, J.A.P.: Smoothing of cubic parametric splines. Comput. Aided Design 15(3), 175–179 (1983)

    Article  Google Scholar 

  10. Farin, G., Rein, G., Sapidis, N., Worsey, A.: Fairing cubic b-spline curves. Comput. Aided Geom. Design 4(1), 91–103 (1987)

    Article  MathSciNet  Google Scholar 

  11. Wang, A., Zhao, G., Li, Y.-D.: Wavelet based local fairing algorithm for surfaces with data compression. Int. J. Wavelets Multiresolut. Inf. Process. 13(5), 1550041 (2015)

    Article  MathSciNet  Google Scholar 

  12. Pottmann, H.: Smooth curves under tension. Comput. Aided Design 22(4), 241–245 (1990)

    Article  Google Scholar 

  13. Campbell, E.S.: Smoothest curve approximation. Math. Comput. 11(60), 233–243 (1957)

    Article  MathSciNet  Google Scholar 

  14. Meier, H., Nowacki, H.: Interpolating curves with gradual changes in curvature. Comput. Aided Geom. Design 4(4), 297–305 (1987)

    Article  MathSciNet  Google Scholar 

  15. Rando, T.C.: Automatic fairness in computer-aided geometric design. In: Ph.D. Thesis, The University of Connecticut, aAI9102032 (1990)

  16. Vassilev, T.I.: Fair interpolation and approximation of b-splines by energy minimization and points insertion. Comput. Aided Design 28(9), 753–760 (1996)

    Article  Google Scholar 

  17. Zhang, C., Zhang, P., Cheng, F.: Fairing spline curves and surfaces by minimizing energy. Comput. Aided Design 33(13), 913–923 (2001)

    Article  Google Scholar 

  18. Caliò, F., Miglio, E., Rasella, M.: Curve fairing using integral spline operators. Int. J. Numer. Methods Biomed. Eng. 26(12), 1674–1686 (2010)

    Article  MathSciNet  Google Scholar 

  19. Li, W., Xu, S., Zheng, J., Zhao, G.: Target curvature driven fairing algorithm for planar cubic b-spline curves. Comput. Aided Geom. Design 21(5), 499–513 (2004)

    Article  Google Scholar 

  20. Finkelstein, A., Salesin, D.: Multiresolution curves. SIGGRAPH Comput. Graph. 11 (1997)

  21. Li, A., Wei, G., Tian, H., Kou, F.: Wavelet-based multiresolution nurbs curve fairing. Adv. Mater. Res. 314–316, 1562–1565 (2011)

    Article  Google Scholar 

  22. Li, A., Tian, H.: A multiresolution fairing approach for nurbs curves. Appl. Mech. Mater. 215–216, 1205–1208 (2012)

    ADS  Google Scholar 

  23. Hoschek, J., Lasser, D., Schumaker, L.L.: Fundamentals of Computer Aided Geometric Design. A. K. Peters Ltd, USA (1993)

    Google Scholar 

  24. Qi, D., Tian, Z., Zhang, Y.: The method of numeric polish in curve fitting. Acta Math. Sin. 18, 173–184 (1975)

    Google Scholar 

  25. de Boor, C.: How does agee’s smoothing method work?. In: Proceedings of the 1979 Army Numerical Analysis and Computers Conference 01 (1979)

  26. Lin, H., Wang, G., Dong, C.: Constructing iterative non-uniform b-spline curve and surface to fit data points, Science in China Series F. Inf. Sci. 47, 315–331 (2004)

    Google Scholar 

  27. Lin, H., Bao, H., Wang, G.: Totally positive bases and progressive iteration approximation. Comput. Math. Appl. 50(3), 575–586 (2005)

    Article  MathSciNet  Google Scholar 

  28. Shi, L., Wang, R.: An iterative algorithm of nurbs interpolation and approximation. J. Math. Res. Expos. 26 01 (2006)

  29. Lu, L.: Weighted progressive iteration approximation and convergence analysis. Comput. Aided Geom. Design 27(2), 129–137 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  30. Hu, Q., Wang, J., Liang, R.: Weighted local progressive-iterative approximation property for triangular bézier surfaces. Vis. Comput. 38(11), 3819–3830 (2022)

  31. Wang, Z., Li, Y., Deng, C.: Convergence proof of gs-pia algorithm. J. Comput. Aided Design Comput. Graph. 30, 2035 (2018)

    Article  Google Scholar 

  32. Deng, C., Lin, H.: Progressive and iterative approximation for least squares b-spline curve and surface fitting. Comput. Aided Des. 47, 32–44 (2014)

    Article  MathSciNet  Google Scholar 

  33. Zhang, L., Ge, X., Tan, J.: Least square geometric iterative fitting method for generalized b-spline curves with two different kinds of weights. Vis. Comput. 32, 1109–1120 (2016)

    Article  Google Scholar 

  34. Wang, H.: On extended progressive and iterative approximation for least squares fitting. Vis. Comput. 38, 591–602 (2021)

    Article  Google Scholar 

  35. Chen, Z., Luo, X., Tan, L., Ye, B., Chen, J.: Progressive interpolation based on catmull clark subdivision surfaces. Comput. Graph. Forum 27, 1823–1827 (2008)

    Article  Google Scholar 

  36. Deng, C., Ma, W.: Weighted progressive interpolation of loop subdivision surfaces. Comput. Aided Des. 44, 424–431 (2012)

    Article  Google Scholar 

  37. Hamza, Y., Lin, H.: Conjugate-gradient progressive-iterative approximation for loop and catmull-clark subdivision surface interpolation. J. Comput. Sci. Technol. 37(2), 487–502 (2022)

    Article  Google Scholar 

  38. Wang, Z., Li, Y., Liu, J., Ma, W., Deng, C.: Gauss-seidel progressive iterative approximation (gs-pia) for subdivision surface interpolation. Vis. Comput. 10 (2021)

  39. Hamza, Y., Lin, H., Li, Z.: Implicit progressive-iterative approximation for curve and surface reconstruction. Comput. Aided Geom. Design 77, 101817 (2020)

    Article  MathSciNet  Google Scholar 

  40. Liu, S., Liu, T., Hu, L., Shang, Y., Liu, X.: Variational progressive-iterative approximation for rbf-based surface reconstruction. Vis. Comput. 37, 2485–2497 (2021)

    Article  Google Scholar 

  41. Zhang, Y., Wang, P., Bao, F., Yao, X., Zhang, C., Lin, H.: A single image super-resolution method based on progressive-iterative approximation. IEEE Trans. Multimedia 22, 1407–1422 (2020)

    Article  Google Scholar 

  42. Lin, H., Maekawa, T., Deng, C.: Survey on geometric iterative methods and their applications. Comput. Aided Design 95, 40–51 (2018)

    Article  Google Scholar 

  43. Veltkamp, R.C., Wesselink, W.: Modeling 3d curves of minimal energy. Comput. Graph. Forum 14, 97–110 (1995)

    Article  Google Scholar 

  44. Zhang, C., Zhang, P., Cheng, F.F.: Fairing spline curves and surfaces by minimizing energy. Comput. Aided Des. 33(13), 913–923 (2001)

    Article  Google Scholar 

  45. Meier, H., Nowacki, H.: Interpolating curves with gradual changes in curvature. Comput. Aided Geom. Design 4(4), 297–305 (1987)

    Article  MathSciNet  Google Scholar 

  46. Wang, X., Cheng, F.F., Barsky, B.A.: Energy and b-spline interproximation. Comput. Aided Des. 29(7), 485–496 (1997)

    Article  Google Scholar 

  47. Lin, H., Cao, Q., Zhang, X.: The convergence of least-squares progressive iterative approximation for singular least-squares fitting system. J. Syst. Sci. Complex. 31(6), 1618–1632 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant nos. 62272406, 61872316, and the National Key R &D Plan of China under Grant no. 2020YFB1708900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we show the convergence of the fairing-PIA method when the diagonal elements of matrix \(\varvec{\Omega }\) are equal to a constant value \(\omega \), and coefficient matrix \(\varvec{B}\) is a positive semidefinite matrix.

Lemma Appendix 1

Let the diagonal elements of matrix \(\varvec{\Lambda }\) satisfy \(0<\mu _i<\frac{2}{\lambda _{\text {max}}\left( \varvec{B}\right) },\;i=1,2,\cdots ,n\), where \(\lambda _{\text {max}}\) is the largest eigenvalue of \(\varvec{B}\). The eigenvalues \(\beta \) of the matrix \(\varvec{\Lambda B}\)(9) are all real and satisfy \(0\le \beta <2\).

Proof

Matrix \(\varvec{B}\) is a positive semidefinite matrix. Thus, real orthogonal matrix \(\varvec{U}\) and diagonal matrix \(\varvec{S}=\text {diag}\left( s_1,s_2, \cdots ,s_n\right) \), \(s_i\ge 0,\; i=1,2,\cdots ,n\) exist, such that \(\varvec{B} = \varvec{USU}^T\). We obtain the following by denoting \(\varvec{C}=\varvec{S}^{\frac{1}{2}}\varvec{U}^T\):

$$\begin{aligned} \varvec{B} = \varvec{C}^T\varvec{C}. \end{aligned}$$
(26)

Suppose that \(\beta \) is an arbitrary eigenvalue of matrix \(\varvec{\Lambda C}^T\varvec{C}\) w.r.t. eigenvector \(\varvec{v}\), i.e.,

$$\begin{aligned} \varvec{\Lambda C}^T\varvec{Cv} = \beta \varvec{v}. \end{aligned}$$
(27)

In this case, we obtain

$$\begin{aligned} \varvec{C\Lambda C}^T\left( \varvec{Cv}\right) = \beta \left( \varvec{Cv}\right) , \end{aligned}$$

by multiplying both sides of Eq. (27) by \(\varvec{C}\), indicating that \(\beta \) is also an eigenvalue of the matrix \(\varvec{C\Lambda C}^T\) w.r.t. eigenvector \(\varvec{Cv}\). Moreover, for all nonzero vectors \(\varvec{x}\in R^{n}\), it holds

$$\begin{aligned} \varvec{x}^T\varvec{C\Lambda C}^T\varvec{x} = \left( \varvec{x}^T\varvec{C\Lambda }^{\frac{1}{2}}\right) \left( \varvec{x}^T\varvec{C\Lambda }^{\frac{1}{2}}\right) ^T\ge 0. \end{aligned}$$

Therefore, we conclude that the matrix \(\varvec{C\Lambda C}^T\) is a positive semidefinite matrix. Thus, all its eigenvalues are nonnegative real numbers, i.e., \(\beta \ge 0\). According to Eq. (27), the eigenvalues of matrix \(\varvec{\Lambda B}=\varvec{\Lambda C}^T\varvec{C}\) are also all nonnegative real numbers.

On the other hand, given that \(0<\mu _i<\frac{2}{\lambda _{\text {max}}\left( \varvec{B}\right) },\;i=1,2,\cdots ,n\), the eigenvalues of \(\varvec{\Lambda B}\) meet

$$\begin{aligned} 0\le & {} \lambda \left( \varvec{\Lambda B}\right)< \left\| \varvec{\Lambda B}\right\| _2 \le \left\| \varvec{\Lambda }\right\| _2 \left\| \varvec{B}\right\| _2\\= & {} \lambda _{\text {max}}\left( \varvec{\Lambda }\right) \lambda _{\text {max}}\left( \varvec{B}\right) < 2. \end{aligned}$$

\(\square \)

Remark Appendix 2

Let \(n_0\) denote the dimension of the zero eigenspace of \(\varvec{B}\) (10). Given that \(\varvec{\Lambda }\) is nonsingular, the ranks of the matrix \(\varvec{B}\) and \(\varvec{\Lambda B}\) are the same, i.e.,

$$\begin{aligned} \text {rank}\left( \varvec{\Lambda B}\right) =\text {rank}\left( \varvec{B}\right) =n-n_0. \end{aligned}$$

Moreover, in the proof of Theorem Appendix 5, a lemma similar to Lemma 2.5 in [47] is used as follows:

Lemma Appendix 3

The algebraic multiplicity of the zero eigenvalue of matrix \(\varvec{\Lambda B}\) is equal to its geometric multiplicity.

Proof

Based on Eq. (26), matrix \(\varvec{\Lambda B}\) can be written as \(\varvec{\Lambda C}^T\varvec{C}\). Then, the proof of this lemma is similar to that of Lemma 2.5 provided in [47]. \(\square \)

Lemma Appendix 4

The Jordan canonical form of the matrix \(\varvec{\Lambda B}\)(9) can be represented as

(28)

where

is called a Jordan block of size \(n_i\) with eigenvalue \(\beta _i\), and \(0<\beta _i<2\) and \(i=1,2,\cdots ,k\) are the nonzero eigenvalues of \(\varvec{\Lambda B}\).

Proof

Based on Lemma Appendix 1, the eigenvalues of \(\varvec{\Lambda B}\) are all nonnegative real numbers. Thus, the Jordan canonical form of \(\varvec{\Lambda B}\) can be written as

where \(\varvec{J}_{n_i}(\beta _i,1)\) is a Jordan block of size \(n_i\) with nonzero eigenvalue \(\beta _i\) of \(\varvec{\Lambda B}\), \(i=1,2,\cdots ,k\), and \(\varvec{J}_{m_j}(0,1)\) is a Jordan block of size \(m_i\) with zero eigenvalue of \(\varvec{\Lambda B}\), \(j=1,2,\cdots ,l\).

Moreover, Lemma Appendix 3 states that the algebraic multiplicity of the zero eigenvalue of the matrix \(\varvec{\Lambda B}\) is equal to its geometric multiplicity. This finding means that the Jordan blocks w.r.t the zero eigenvalues of the matrix \(\varvec{\Lambda B}\) are all equal to the matrix \((0)_{1\times 1}\). \(\square \)

Theorem Appendix 5

If \(\varvec{B}\) is a positive semidefinite matrix, then iterative method (9) is convergent.

Proof

A positive semidefinite matrix \(\varvec{B}\) can be decomposed as

$$\begin{aligned} \varvec{B}=\varvec{V}\text {diag}(\lambda _1,\lambda _2,\cdots ,\lambda _{n-n_0},\underset{n_0}{\underbrace{0,\cdots ,0}})\varvec{V}^T, \end{aligned}$$

where \(\varvec{V}\) is an orthogonal matrix, and \(\lambda _i\) and \(i=1,2,\cdots ,n-n_0\) are both the nonzero eigenvalues and nonzero singular values of \(\varvec{B}\). Then, the Moore-Penrose (M-P) inverse of \(\varvec{B}\) has the corresponding decomposition as follows:

$$\begin{aligned} \varvec{B}^{+}=\varvec{V}\text {diag}(\frac{1}{\lambda _1},\frac{1}{\lambda _2},\cdots ,\frac{1}{\lambda _{n-n_0}},\underset{n_0}{\underbrace{0,\cdots ,0}})\varvec{V}^T. \end{aligned}$$

Thus,

$$\begin{aligned} \varvec{B}^{+}\varvec{B} = \varvec{V}\text {diag}(\underset{n-n_0}{\underbrace{1,1,\cdots ,1}},\underset{n_0}{\underbrace{0,\cdots ,0}})\varvec{V}^T. \end{aligned}$$
(29)

Based on Lemma Appendix 4, the Jordan canonical form of the matrix \(\varvec{\Lambda B}\) is \(\varvec{J}\) (28). We obtain the following by using the Jordan decomposition: \(\varvec{\Lambda B}=\varvec{T}^{-1}\varvec{JT}\), where \(\varvec{T}\) is an invertible matrix. Hence,

Based on Lemma Appendix 1, \(-1<1-\beta _i<1\), \(i=1,2,\cdots ,k\). Then, we obtain the following by combining Eq. (29):

$$\begin{aligned}&\lim _{h\rightarrow \infty }\left( \varvec{I}-\varvec{\Lambda B} \right) ^h\nonumber \\&\quad = \varvec{T}^{-1}\text {diag}( \underset{n-n_0}{\underbrace{0,0,\cdots ,0}},\underset{n_0}{\underbrace{1,\cdots ,1}})\varvec{T}\nonumber \\&\quad = \varvec{T}^{-1}(\varvec{I}-\text {diag}(\underset{n-n_0}{\underbrace{1,1,\cdots ,1}},\underset{n_0}{\underbrace{0,\cdots ,0}}))\varvec{T}\nonumber \\&\quad = \varvec{I}-\left( \varvec{VT}\right) ^{-1}\varvec{B}^{+}\varvec{B}\left( \varvec{VT}\right) . \end{aligned}$$
(30)

On the other hand, the coefficient matrix \(\varvec{B}\) is singular; thus, the linear system in Eq. (17) has its solution if and only if

$$\begin{aligned} \left( 1-\omega \right) \varvec{BB}^{+}\varvec{N}^T\varvec{Q}=\left( 1-\omega \right) \varvec{N}^T\varvec{Q}. \end{aligned}$$

Therefore, we obtain the following by subtracting \(\left( 1-\omega \right) \varvec{B}^{+}\varvec{N}^T\varvec{Q}\) from both sides of iterative scheme (9):

$$\begin{aligned} \begin{aligned}&\varvec{P}^{[k+1]}-\left( 1-\omega \right) \varvec{B}^{+}\varvec{N}^T\varvec{Q}\\&\quad = \left( \varvec{I}-\varvec{\Lambda B}\right) \varvec{P}^{[k]}+\left( 1-\omega \right) \varvec{\Lambda R}^T\varvec{Q}\\&\qquad - \left( 1-\omega \right) \varvec{B}^{+}\varvec{N}^T\varvec{Q}\\&\quad = \left( \varvec{I}-\varvec{\Lambda B}\right) \varvec{P}^{[k]}\\&\qquad + \left( 1-\omega \right) \varvec{\Lambda }\varvec{BB}^{+}\varvec{N}^T\varvec{Q} - \left( 1-\omega \right) \varvec{B}^{+}\varvec{N}^T\varvec{Q} \\&\quad = \left( \varvec{I}-\varvec{\Lambda B}\right) \varvec{P}^{[k]} - \left( 1-\omega \right) \left( \varvec{I}-\varvec{\Lambda B}\right) \varvec{B}^{+}\varvec{N}^T\varvec{Q} \\&\quad = \left( \varvec{I}-\varvec{\Lambda B}\right) \left( \varvec{P}^{[k]}-\left( 1-\omega \right) \varvec{B}^{+}\varvec{N}^T\varvec{Q}\right) \\&\quad = \left( \varvec{I}-\varvec{\Lambda B}\right) ^{k+1}\left( \varvec{P}^{[0]}-\left( 1-\omega \right) \varvec{B}^{+}\varvec{N}^T\varvec{Q}\right) . \end{aligned} \end{aligned}$$

From Eq. (30), when \(k\rightarrow \infty \), the above equation tends to

$$\begin{aligned}{} & {} \varvec{P}^{[\infty ]} - \left( 1-\omega \right) \varvec{B}^{+}\varvec{N}^T\varvec{Q}\\{} & {} \quad = \left( \varvec{I}-\left( \varvec{VT}\right) ^{-1}\varvec{B}^{+}\varvec{B}\left( \varvec{VT}\right) \right) \\{} & {} \quad \left( \varvec{P}^{[0]}-\left( 1-\omega \right) \varvec{B}^{+}\varvec{N}^T\varvec{Q}\right) . \end{aligned}$$

Consequently,

$$\begin{aligned} \begin{aligned} \varvec{P}^{[\infty ]}&= \left( \varvec{I}-\left( \varvec{VT}\right) ^{-1}\varvec{B}^{+}\varvec{B}\left( \varvec{VT}\right) \right) \\&\quad \left( \varvec{P}^{[0]}-\left( 1-\omega \right) \varvec{B}^{+}\varvec{N}^T\varvec{Q}\right) \\&\quad + \left( 1-\omega \right) \varvec{B}^{+}\varvec{N}^T\varvec{Q} \\&= \left( 1-\omega \right) \left( \varvec{VT}\right) ^{-1}\varvec{B}^{+}\varvec{B}\left( \varvec{VT}\right) \varvec{B}^{+}\varvec{N}^T\varvec{Q}\\&\quad + \left( \varvec{I}-\left( \varvec{VT}\right) ^{-1}\varvec{B}^{+}\varvec{B}\left( \varvec{VT}\right) \right) \varvec{P}^{[0]}, \end{aligned} \end{aligned}$$

where \(\varvec{P}^{[0]}\) is the initial control point, which can be randomly selected. When \(\varvec{P}^{[0]}=0\), iterative method (9) converges to

$$\begin{aligned} \varvec{P}^{[\infty ]} = \left( 1-\omega \right) \left( \varvec{VT}\right) ^{-1}\varvec{B}^{+}\varvec{B}\left( \varvec{VT}\right) \varvec{B}^{+}\varvec{N}^T\varvec{Q}. \end{aligned}$$
(31)

\(\square \)

Remark Appendix 6

If matrix \(\varvec{V}\) is the inverse matrix of \(\varvec{T}\), that is, \(\varvec{VT}=\varvec{TV}=\varvec{I}\), then Eq. (31) becomes

$$\begin{aligned} \varvec{P}^{[\infty ]} = \left( 1-\omega \right) \varvec{B}^{+}\varvec{N}^T\varvec{Q}, \end{aligned}$$

where \(\varvec{B}^{+}\) is the M-P pseudo-inverse of the matrix \(\varvec{B}\). Then iterative method (9) converges to the solution of classical energy minimization Eq. (17).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Lin, H. & Huang, W. Fairing-PIA: progressive-iterative approximation for fairing curve and surface generation. Vis Comput 40, 1467–1484 (2024). https://doi.org/10.1007/s00371-023-02861-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-02861-7

Keywords

Navigation