Skip to main content
Log in

Secure management of retinal imaging based on deep learning, zero-watermarking and reversible data hiding

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Advances in communication and information technologies have allowed for improvements in the distribution and management of several types of imaging in digital medical environments. The scientific literature has reported data hiding methods that can contribute to improving medical image management and mitigate information security risks. This paper proposes a secure management scheme for retinal imaging based on deep learning, reversible data hiding and zero-watermarking. To create a proper link between a patient and their retinal image, a unique feature is obtained through retina vessel segmentation and optic disk detection using U-Net and RetinaNet deep learning architectures, respectively. The unique feature, in conjunction with a halftoned version of the patient’s image, are employed to generate a zero-watermarking code using a zero-watermarking technique based on message digest, spread spectrum, and seam-carving methods. Finally, using a color channel of the retinal image, the zero-watermarking code is concealed in a reversible manner using a data hiding technique based on code division multiplexing. The proposed method ensures patient authentication and verification of integrity, and avoids detachment between the patient and their retinal image. Experimental results show the contribution of the proposed scheme to and its efficiency in retinal image management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shi, C., Lee, J., Wang, G., et al.: Assessment of image quality on color fundus retinal images using the automatic retinal image analysis. Sci. Rep. 12, 10455 (2022). https://doi.org/10.1038/s41598-022-13919-2

    Article  Google Scholar 

  2. Nelson, S.E., Steuernagle, J., Rotello, L., et al.: COVID-19 and telehealth in the intensive care unit setting: a survey. BMC Health Serv. Res. 22, 797 (2022). https://doi.org/10.1186/s12913-022-08197-7

    Article  Google Scholar 

  3. National Electrical Manufacturers Association (NEMA), DICOM Security. p. 1. [Online] 13 Jan 2023. Available at: https://www.dicomstandard.org/using/security/

  4. Mahesh Selvi, T., Kavitha, V.: A privacy-aware deep learning framework for health recommendation system on analysis of big data. Vis. Comput. (2021). https://doi.org/10.1007/s00371-020-02021-1

    Article  Google Scholar 

  5. Qasim, A.F., Meziane, F., Aspin, R.: Digital watermarking: applicability for developing trust in medical imaging workflows state of the art review. Comput. Sci. Rev. 27, 45–60 (2018). https://doi.org/10.1016/j.cosrev.2017.11.003

    Article  MathSciNet  Google Scholar 

  6. Mousavi, S.M., Naghsh, A., Abu-Bakar, S.A.R.: Watermarking techniques used in medical images: a survey. J. Digit Imaging 27, 714–729 (2014). https://doi.org/10.1007/s10278-014-9700-5

    Article  Google Scholar 

  7. Barni, M., Bartolini, F.: Applications. In: Watermarking Systems Engineering: Enabling Digital Assets Security and Other Applications, pp. 23–44. CRC Press, Boca Raton (2004)

    Chapter  Google Scholar 

  8. Barni, M., Cox, I., Kalker, T., Kim, H.J.: Digital watermarking, 2005, https://doi.org/10.1007/11551492

  9. Cox, I., Miller, M., Bloom, J.: Applications and properties. In: Digital Watermarking, Morgan Kaufmann Publishers, USA, 2002, pp. 11–39 https://www.elsevier.com/books/digital-watermarking/cox/978-1-55860-714-9

  10. RoselinKiruba, R., Sharmila, T.S.: A novel data hiding by image interpolation using edge quad-tree block complexity. Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02312-1

    Article  Google Scholar 

  11. Jaya Prakash, S., Mahalakshmi, K.: Improved reversible data hiding scheme employing dual image-based least significant bit matching for secure image communication using style transfer. Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02285-1

    Article  Google Scholar 

  12. Su, G.D., Chang, C.C.: Toward high-capacity crypto-domain reversible data hiding with huffman-based lossless image coding. Vis. Comput. (2022). https://doi.org/10.1007/s00371-022-02613-z

    Article  Google Scholar 

  13. Yuan, Z., Su, Q., Liu, D., et al.: A blind image watermarking scheme combining spatial domain and frequency domain. Vis. Comput. (2020). https://doi.org/10.1007/s00371-020-01945-y

    Article  Google Scholar 

  14. Liu, D., Su, Q., Yuan, Z., et al.: A color watermarking scheme in frequency domain based on quaternary coding. Vis. Comput. (2020). https://doi.org/10.1007/s00371-020-01991-6

    Article  Google Scholar 

  15. Bagheri, B.A.S., Zhang, G., Wei, S., et al.: An intelligent and blind image watermarking scheme based on hybrid SVD transforms using human visual system characteristics. Vis. Comput. 37, 385–409 (2021). https://doi.org/10.1007/s00371-020-01808-6

    Article  Google Scholar 

  16. Gong, Z., Qin, N., Zhang, G.: Visible watermarking in document images using two-stage fuzzy inference system. Vis. Comput. (2021). https://doi.org/10.1007/s00371-020-02045-7

    Article  Google Scholar 

  17. Mata-Mendoza, D., Cedillo-Hernandez, M., Garcia-Ugalde, F., et al.: Secured telemedicine of medical imaging based on dual robust watermarking. Vis. Comput. 38, 2073–2090 (2022). https://doi.org/10.1007/s00371-021-02267-3

    Article  Google Scholar 

  18. Hu, K., Wang, X., Hu, J., et al.: A novel robust zero-watermarking algorithm for medical images. Vis. Comput. 37, 2841–2853 (2021). https://doi.org/10.1007/s00371-021-02168-5

    Article  Google Scholar 

  19. Magdy, M., Hosny, K.M., Ghali, N.I., et al.: Security of medical images for telemedicine: a systematic review. Multimed. Tools Appl. 81, 25101–25145 (2022). https://doi.org/10.1007/s11042-022-11956-7

    Article  Google Scholar 

  20. Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004). https://doi.org/10.1109/TMI.2004.825627

    Article  Google Scholar 

  21. Hill, R.B.: Apparatus and method for identifying individuals through their retinal vasculature patterns. Patent US4109237, (1978)

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Lecture Notes in Computer Science. Springer, Cham (2015)

    Google Scholar 

  23. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Int. Conf. Comput. Vis. (ICCV) 2017, 2999–3007 (2017). https://doi.org/10.1109/ICCV.2017.324

    Article  Google Scholar 

  24. Mese, M., Vaidyanathan, P.: Recent advances in digital halftoning and inverse halftoning methods. IEEE Trans. Circ. Syst. I 49(6), 790–805 (2002). https://doi.org/10.1109/TCSI.2002.1010034

    Article  Google Scholar 

  25. Cedillo-Hernandez, M., Cedillo-Hernandez, A., Nakano-Miyatake, M., Perez-Meana, H.: Improving the management of medical imaging by using robust and secure dual watermarking. Biomed. Signal Process. Control 56, 101695 (2020). https://doi.org/10.1016/j.bspc.2019.101695

    Article  Google Scholar 

  26. Paar, C., Pelzl, J.: Understanding Cryptography: A Textbook for Students and Practitioners. Springer-Verlag, Berlin (2010)

    Book  Google Scholar 

  27. Cedillo-Hernandez, M., Cedillo-Hernandez, A., Garcia-Ugalde, F., Nakano-Miyatake, M., Perez-Meana, H.: Digital color images ownership authentication via efficient and robust watermarking in a hybrid domain. Radioeng. J. 26(2), 536–551 (2017). https://doi.org/10.13164/re.2017.0536

    Article  Google Scholar 

  28. Hashemzadeh, M., Asheghi, B., Farajzadeh, N.: Content-aware image resizing: an improved and shadow-preserving seam carving method. Signal Process. 155, 233–246 (2019). https://doi.org/10.1016/j.sigpro.2018.09.037

    Article  Google Scholar 

  29. Ma, B., Shi, Y.Q.: A reversible data hiding scheme based on code division multiplexing. IEEE Trans. Inf. Forensics Secur. 11(9), 1914–1927 (2016). https://doi.org/10.1109/TIFS.2016.2566261

    Article  Google Scholar 

  30. Dutta, M.K., Singh, A., Singh, A., Burget R., Prinosil, J.: Digital identification tags for medical fundus images for tele-ophthalmology applications. In: 2015 38th International Conference on Telecommunications and Signal Processing (TSP), 2015, pp. 781–784, https://doi.org/10.1109/TSP.2015.7296372

  31. Singh, A., Dutta, M.K.: An integrity control system for retinal images based on watermarking. Multimed. Tools Appl. 81, 2429–2452 (2022). https://doi.org/10.1007/s11042-021-11600-w

    Article  Google Scholar 

  32. Abhilasha, S., Malay, K.D.: A robust zero-watermarking scheme for tele-ophthalmological applications. J. King Saud Univ. Comput. Inf. Sci. 32(8), 895–908 (2020). https://doi.org/10.1016/j.jksuci.2017.12.008

    Article  Google Scholar 

  33. Anushikha, S., Malay, K.D., Dilip, K.S.: Unique identification code for medical fundus images using blood vessel pattern for tele-ophthalmology applications. Comput. Methods Programs Biomed. 135, 61–75 (2016). https://doi.org/10.1016/j.cmpb.2016.07.011

    Article  Google Scholar 

  34. Hassan, B., Ahmed, R., Li, B., Hassan, O.: An imperceptible medical image watermarking framework for automated diagnosis of retinal pathologies in an ehealth arrangement. IEEE Access 7, 69758–69775 (2019). https://doi.org/10.1109/ACCESS.2019.2919381

    Article  Google Scholar 

  35. Al-qdah, M.: Secure watermarking technique for medical images with visual evaluation. Signal Image Process. Int. J. (SIPIJ) (2018). https://doi.org/10.5121/sipij.2018.9101

    Article  Google Scholar 

  36. Singh, A., Dutta, M.K.: Lossless and robust digital watermarking scheme for retinal images. In: 2018 4th International Conference on Computational Intelligence & Communication Technology (CICT), pp. 1–5. (2018) https://doi.org/10.1109/CIACT.2018.8480151

  37. Anushikha, S., Malay, K.D.: Imperceptible watermarking for security of fundus images in tele-ophthalmology applications and computer-aided diagnosis of retina diseases. Int. J. Med. Inf. 108, 110–124 (2017). https://doi.org/10.1016/j.ijmedinf.2017.10.010

    Article  Google Scholar 

  38. Hao-Tian, W., Shaohua, T., Jiwu, H., Yun-Qing, S.: A novel reversible data hiding method with image contrast enhancement. Signal Process. Image Commun. 62, 64–73 (2018). https://doi.org/10.1016/j.image.2017.12.006

    Article  Google Scholar 

  39. Wang, Z., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  40. Mukherjee, S., Su, G.M., Cheng, I.: Adaptive dithering using curved Markov-Gaussian noise in the quantized domain for mapping SDR to HDR image. In: Basu, A., Berretti, S. (eds.) Smart Multimedia ICSM 2018 Lecture Notes in Computer Science. Springer, Cham (2018)

    Google Scholar 

Download references

Acknowledgments

Authors thanks the Instituto Politecnico Nacional (IPN) as well as the Consejo Nacional de Ciencia y Tecnologia de Mexico (CONACYT) by the support provided during the realization of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Cedillo-Hernandez.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Nonoal, Z., Mata-Mendoza, D., Cedillo-Hernandez, M. et al. Secure management of retinal imaging based on deep learning, zero-watermarking and reversible data hiding. Vis Comput 40, 245–260 (2024). https://doi.org/10.1007/s00371-023-02778-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-02778-1

Keywords

Navigation