Skip to main content
Log in

A practical and efficient model for intensity calibration of multi-light image collections

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a novel practical and efficient mathematical formulation for light intensity calibration of multi-light image collections (MLICs). Inspired by existing and orthogonal calibration methods, we design a hybrid solution that leverages their strengths while overcoming most of their weaknesses. We combine the rationale of approaches based on fixed analytical models with the interpolation scheme of image domain methods. This allows us to minimize the final residual error in light intensity estimation, without imposing an overly constraining illuminant type. Unlike previous approaches, the proposed calibration strategy proved to be simpler, more efficient and versatile, and extremely adaptable in different setup scenarios. We conduct an extensive analysis and validation of our new light model compared to several state-of-the-art techniques, and we show how the proposed solution provides a more reliable outcomes in terms of accuracy and precision, and a more stable calibration across different light positions/orientations, and with a more general light form factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ackermann, J., Fuhrmann, S., Goesele, M.: Geometric point light source calibration. In: Proceedings of the VMV, pp. 161–168 (2013)

  2. Alldrin, N.G., Mallick, S.P., Kriegman, D.J.: Resolving the generalized bas-relief ambiguity by entropy minimization. In: Proceedings of the CVPR, pp. 1–7 (2007)

  3. Angelopoulou, M.E., Petrou, M.: Uncalibrated flatfielding and illumination vector estimationfor photometric stereo face reconstruction. Mach. Vis. Appl. 25(5), 1317–1332 (2014)

    Article  Google Scholar 

  4. Barsky, S., Petrou, M.: The 4-source photometric stereo technique for three-dimensional surfaces in the presence of highlights and shadows. IEEE TPAMI 25(10), 1239–1252 (2003)

    Article  Google Scholar 

  5. Basri, R., Jacobs, D., Kemelmacher, I.: Photometric stereo with general, unknown lighting. Int. J. Comput. Vis. 72(3), 239–257 (2007)

    Article  Google Scholar 

  6. Chen, G., Han, K., Shi, B., Matsushita, Y., Wong, K.Y.K.: Self-calibrating deep photometric stereo networks. In: Proceedings of the CVPR, pp. 8739–8747 (2019)

  7. Chen, G., Han, K., Wong, K.Y.K.: PS-FCN: a flexible learning framework for photometric stereo. In: Proceedings of the ECCV, pp. 3–18 (2018)

  8. CHI: Cultural heritage imaging website (2020). http://culturalheritageimaging.org. Accessed March 2019

  9. Ciortan, I., Pintus, R., Marchioro, G., Daffara, C., Giachetti, A., Gobbetti, E.: A practical reflectance transformation imaging pipeline for surface characterization in cultural heritage. In: Proceedings of the GCH, pp. 127–136 (2016)

  10. Dong, Y., Chen, G., Peers, P., Zhang, J., Tong, X.: Appearance-from-motion: Recovering spatially varying surface reflectance under unknown lighting. ACM TOG 33(6), 1–12 (2014)

    Article  Google Scholar 

  11. Gardner, A., Tchou, C., Hawkins, T., Debevec, P.: Linear light source reflectometry. ACM TOG 22(3), 749–758 (2003)

    Google Scholar 

  12. Georgiev, G.T., Butler, J.J.: BRDF study of gray-scale spectralon. In: Earth Observing Systems XIII, vol. 7081, p. 708107. International Society for Optics and Photonics (2008)

  13. Giachetti, A., Ciortan, I., Daffara, C., Marchioro, G., Pintus, R., Gobbetti, E.: A novel framework for highlight reflectance transformation imaging. Comput. Vis. Image Underst. 168, 118–131 (2018)

    Article  Google Scholar 

  14. Habel, R., Wimmer, M.: Efficient irradiance normal mapping. Proceedings of the I3D, 189–195 (2010)

    Google Scholar 

  15. Huang, X., Walton, M., Bearman, G., Cossairt, O.: Near light correction for image relighting and 3D shape recovery. Proceedings of the Digital Heritage 1, 215–222 (2015)

    Google Scholar 

  16. Ikeuchi, K., Horn, B.K.: An application of the photometric stereo method. Tech. Rep. AI Memo 539, MIT AI Lab (1979)

  17. Jung, J., Lee, J.Y., So Kweon, I.: One-day outdoor photometric stereo via skylight estimation. In: Proceedings of the CVPR, pp. 4521–4529 (2015)

  18. Koppal, S.J., Narasimhan, S.G.: Novel depth cues from uncalibrated near-field lighting. In: Proceedings of the ICCV, pp. 1–8 (2007)

  19. Li, B., Feng, J., Zhou, B.: A SVBRDF modeling pipeline using pixel clustering (2019). arXiv preprint arXiv:1912.00321

  20. Lu, F., Matsushita, Y., Sato, I., Okabe, T., Sato, Y.: Uncalibrated photometric stereo for unknown isotropic reflectances. In: Proceedings of the CVPR, pp. 1490–1497 (2013)

  21. Ma, L., Liu, J., Pei, X., Hu, Y., Sun, F.: Calibration of position and orientation for point light source synchronously with single image in photometric stereo. Opt. Express 27(4), 4024–4033 (2019)

    Article  Google Scholar 

  22. Mecca, R., Wetzler, A., Bruckstein, A.M., Kimmel, R.: Near field photometric stereo with point light sources. SIAM J. Imaging Sci. 7(4), 2732–2770 (2014)

    Article  MathSciNet  Google Scholar 

  23. Migita, T., Ogino, S., Shakunaga, T.: Direct bundle estimation for recovery of shape, reflectance property and light position. In: Proceedings of the ECCV, pp. 412–425 (2008)

  24. Nimier-David, M., Vicini, D., Zeltner, T., Jakob, W.: Mitsuba 2: a retargetable forward and inverse renderer. ACM TOG 38(6), 1–17 (2019)

    Article  Google Scholar 

  25. Papadhimitri, T., Favaro, P.: A closed-form, consistent and robust solution to uncalibrated photometric stereo via local diffuse reflectance maxima. Int. J. Comput. Vis. 107(2), 139–154 (2014)

    Article  Google Scholar 

  26. Papadhimitri, T., Favaro, P.: Uncalibrated near-light photometric stereo. In: Proceedings of the British Machine Vision Conference, pp. 1–12. BMVA Press (2014)

  27. Pintus, R., Ciortan, I., Giachetti, A., Gobbetti, E.: Practical free-form RTI acquisition with local spot lights. In: Proceedings of the STAG, pp. 143–150 (2016)

  28. Pintus, R., Dulache, T., Ciortan, I., Gobbetti, E., Giachetti, A.: State-of-the-art in multi-light image collections for surface visualization and analysis. Comput. Graph. Forum 38(3), 909–934 (2019)

    Article  Google Scholar 

  29. Quéau, Y., Durix, B., Wu, T., Cremers, D., Lauze, F., Durou, J.D.: Led-based photometric stereo: modeling, calibration and numerical solution. J. Math. Imaging Vis. 60(3), 313–340 (2018)

    Article  MathSciNet  Google Scholar 

  30. Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment maps. In: Proceedings of the SIGGRAPH, pp. 497–500 (2001)

  31. Sato, I., Okabe, T., Yu, Q., Sato, Y.: Shape reconstruction based on similarity in radiance changes under varying illumination. In: Proceedings of the ICCV, pp. 1–8 (2007)

  32. Sun, J., Smith, M., Smith, L., Farooq, A.: Sampling light field for photometric stereo. Int. J. Comput. Theory Eng. 5(1), 14–18 (2013)

    Article  Google Scholar 

  33. Wong, K.Y.K., Schnieders, D., Li, S.: Recovering light directions and camera poses from a single sphere. In: Proceedings of the ECCV, pp. 631–642 (2008)

  34. Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 191139 (1980)

    Article  Google Scholar 

  35. Xie, L., Song, Z., Jiao, G., Huang, X., Jia, K.: A practical means for calibrating an LED-based photometric stereo system. Opt. Lasers Eng. 64, 42–50 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Sardinian Regional Authorities under grant VIGECLAB. A. Jaspe Villanueva and M. Hadwiger acknowledge the support of KAUST. We thank Fabio Marton for providing the test object.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruggero Pintus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pintus, R., Jaspe Villanueva, A., Zorcolo, A. et al. A practical and efficient model for intensity calibration of multi-light image collections. Vis Comput 37, 2755–2767 (2021). https://doi.org/10.1007/s00371-021-02172-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02172-9

Keywords

Navigation