Skip to main content
Log in

A microfacet-based BRDF for the accurate and efficient rendering of high-definition specular normal maps

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Complex specular microstructures found in glittery, scratched or brushed metal materials exhibit high-frequency variations in reflected light intensity. These variations are important for the human eye and give materials their uniqueness and personality. To model such microsurfaces, high-definition normal maps are very effective. The works of Yan et al. (ACM Trans Graph 33(4):116:1–116:9, 2014; ACM Trans Graph 35(4):56:1–56:9, 2016) enable the rendering of such material representations by evaluating a microfacet-based BRDF related to a whole ray footprint. Still, in specific configurations and especially at grazing angles, their method does not fully capture the expected material appearance. We propose to build upon their work and tackle the problem of accuracy using a more physically based reflection model. To do so, the normal map is approximated with a mixture of anisotropic, noncentered Beckmann normal distribution functions from which a closed form for the masking–shadowing term can be derived. Based on our formal definition, we provide a fast approximation leading to a performance overhead varying from 5 to 20% compared to the method of Yan et al. (2016). Our results show that we more closely match ground truth renderings than their methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Atanasov, A., Koylazov, V.: A practical stochastic algorithm for rendering mirror-like flakes. In: ACM SIGGRAPH 2016 Talks, SIGGRAPH ’16, pp. 67:1–67:2. ACM, New York (2016)

  2. Belcour, L., Yan, L.Q., Ramamoorthi, R., Nowrouzezahrai, D.: Antialiasing complex global illumination effects in path-space. ACM Trans. Graph. 36(1), 9:1–9:13 (2017)

    Article  Google Scholar 

  3. Bosch, C., Patow, G.: Real-time path-based surface detail. Comput. Graph. 34(4), 430–440 (2010). Procedural methods in computer graphics illustrative visualization

    Article  Google Scholar 

  4. Bosch, C., Pueyo, X., Mérillou, S., Ghazanfarpour, D.: A physically based model for rendering realistic scratches. Comput. Graph. Forum 23(3), 361–370 (2004)

    Article  Google Scholar 

  5. Dupuy, J., Heitz, E., Iehl, J.C., Poulin, P., Neyret, F., Ostromoukhov, V.: Linear efficient antialiased displacement and reflectance mapping. ACM Trans. Graph. 32(6), 211:1–211:11 (2013)

    Article  Google Scholar 

  6. Han, C., Sun, B., Ramamoorthi, R., Grinspun, E.: Frequency domain normal map filtering. ACM Trans. Graph. 26(3), 28 (2007)

    Article  Google Scholar 

  7. Heckbert, P.S.: Fundamentals of texture mapping and image warping. Master’s thesis (1989)

  8. Heitz, E.: Understanding the masking–shadowing function in microfacet-based BRDFs. J. Comput. Graph. Tech. 3(2), 48–107 (2014)

    Google Scholar 

  9. Igehy, H.: Tracing ray differentials. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99, pp. 179–186. ACM Press/Addison-Wesley Publishing Co., New York (1999)

  10. Jakob, W., Hašan, M., Yan, L.Q., Lawrence, J., Ramamoorthi, R., Marschner, S.: Discrete stochastic microfacet models. ACM Trans. Graph. 33(4), 115:1–115:10 (2014)

    Google Scholar 

  11. Lewis, R.R.: Making shaders more physically plausible. Comput. Graph. Forum 13(2), 109–120 (1994)

    Article  Google Scholar 

  12. Merillou, S., Dischler, J., Ghazanfarpour, D.: Surface scratches: measuring, modeling and rendering. Vis. Comput. 17(1), 30–45 (2001)

    Article  MATH  Google Scholar 

  13. Olano, M., Baker, D.: Lean mapping. In: Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’10, pp. 181–188. ACM, New York (2010)

  14. Pharr, M., Jakob, W., Humphreys, G.: Physically Based Rendering: From Theory to Implementation, 3rd edn. Morgan Kaufmann Publishers Inc., San Francisco (2016)

    Google Scholar 

  15. Raymond, B., Guennebaud, G., Barla, P.: Multi-scale rendering of scratched materials using a structured SV-BRDF model. ACM Trans. Graph. 35(4), 57:1–57:11 (2016)

    Article  Google Scholar 

  16. Smith, B.: Geometrical shadowing of a random rough surface. IEEE Trans. Antennas Propag. 15(5), 668–671 (1967)

    Article  Google Scholar 

  17. Suykens, F., Willems, Y.D.: Path differentials and applications. In: Gortler, S.J., Myszkowski, K. (eds.) Rendering Techniques 2001, pp. 257–268. Springer, Vienna (2001)

    Chapter  Google Scholar 

  18. Toksvig, M.: Mipmapping normal maps. J. Graph. Tools 10(3), 65–71 (2005)

    Article  Google Scholar 

  19. Walter, B., Marschner, S.R., Li, H., Torrance, K.E.: Microfacet models for refraction through rough surfaces. In: Proceedings of the 18th Eurographics Conference on Rendering Techniques, EGSR’07, pp. 195–206. Eurographics Association, Aire-la-Ville (2007)

  20. Xu, C., Wang, R., Zhao, S., Bao, H.: Real-time linear BRDF MIP-mapping. Comput. Graph. Forum 36(4), 27–34 (2017)

    Article  Google Scholar 

  21. Yan, L.Q., Hašan, M., Jakob, W., Lawrence, J., Marschner, S., Ramamoorthi, R.: Rendering glints on high-resolution normal-mapped specular surfaces. ACM Trans. Graph. 33(4), 116:1–116:9 (2014)

    MATH  Google Scholar 

  22. Yan, L.Q., Hašan, M., Marschner, S., Ramamoorthi, R.: Position-normal distributions for efficient rendering of specular microstructure. ACM Trans. Graph. 35(4), 56:1–56:9 (2016)

    Google Scholar 

  23. Yan, L.Q., Hašan, M., Walter, B., Marschner, S., Ramamoorthi, R.: Rendering specular microgeometry with wave optics. ACM Trans. Graph. 37(4), 75:1–75:10 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Chermain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 221998 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chermain, X., Claux, F. & Mérillou, S. A microfacet-based BRDF for the accurate and efficient rendering of high-definition specular normal maps. Vis Comput 36, 267–277 (2020). https://doi.org/10.1007/s00371-018-1606-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1606-7

Keywords

Navigation