Skip to main content
Log in

Implicit modeling from polygon soup using convolution

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a novel method for creating implicit surfaces from polygonal models. The implicit function is defined by convolving a kernel with the triangles in the polygonal model. By adopting a piecewise quartic polynomial kernel function with a finite support, we derive a convolution model that has a closed-form solution, and thus can be efficiently evaluated. The user only needs to specify an effective radius of influence to generate an implicit surface of desired closeness to the polygonal model. The resulting implicit surface is fast to evaluate, not requiring accumulating evaluation results using any hierarchical data structure, and can be efficiently ray-traced to reveal the detailed features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blinn, J.F.: A Generalization of algebraic surface drawing. ACM Trans. Graph. 1(3), 235–256 (1982)

    Article  Google Scholar 

  2. Bloomenthal, J., Shoemake, K.: Convolution Surfaces. In: Proceedings of SIGGRAPH ’91, pp. 251–256. ACM, New York (1991)

    Chapter  Google Scholar 

  3. Bloomenthal, J., Bajaj, C., Blinn, J., Cani, M., Rockwood, A., Wyvilland, B.G.: An Introduction to Implicit Surfaces. Morgan Kaufmann Publishers, Los Altos, CA (1997)

    Google Scholar 

  4. Bloomenthal, J.: Polygonization of implicit surfaces. Comput. Aided Geom. Des. 5(4), 341–355 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bloomenthal, J.: Bulge elimination in convolution surfaces. Comput. Graph. Forum 16(1), 31–41 (1997)

    Article  Google Scholar 

  6. Cani, M.P., Desbrun, M.: Animation of deformable models using implicit surfaces. IEEE Trans. Vis. Comput. Graph. 3(1), 39–50 (1997)

    Article  Google Scholar 

  7. Carr, J., Beatson, R., Cherrie, J., Mitchell, T., Fright, W., McCallum, B.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of SIGGRAPH ’01, pp. 67–76. ACM, New York (2001)

    Chapter  Google Scholar 

  8. Dobashi, Y., Kaneda, K., Yamashita, H., Okita, T., Nishita, T.: A simple, efficient method for realistic animation of clouds. In: Proceedings of SIGGRAPH ’00, pp. 19–28. ACM, New York (2000)

    Chapter  Google Scholar 

  9. Hornus, S., Angelidis, A., Cani, M.P.: Implicit modeling using subdivision curves. Visual Comput. 19(2–3), 94–104 (2003)

    MATH  Google Scholar 

  10. Jin, X., Tai, C.L.: Convolution surfaces for arcs and quadratic curves with a varying kernel. Visual Comput. 18(8), 530–546 (2002)

    Article  Google Scholar 

  11. Kalra, D., Barr, A.H.: Guaranteed ray intersections with implicit surfaces. In: Proceedings of SIGGRAPH ’89, pp. 297–306. ACM, New York, NY (1989)

    Chapter  Google Scholar 

  12. Kanai, T., Ohtake, Y., Kase, K.: Hierarchical error-driven approximation of implicit surfaces from polygonal meshes. In: Proceedings of Eurographics Symposium on Geometry Processing, pp. 21-30. Eurographics Association, Aire-la-Ville (2006)

    Google Scholar 

  13. McCormack, J., Sherstyuk, A.: Creating and rendering convolution surfaces. Comput. Graph. Forum 17(2), 113–120 (1998)

    Article  Google Scholar 

  14. Museth, K., Breen, D., Whitaker, R., Barr, A.: Level set surface editing operators. ACM Trans. Graph. 21(3), 330–338 (2002)

    Article  Google Scholar 

  15. Nishimura, H., Hirai, M., Kawai, T.: Object modeling by distribution function and a method of image generation. Image Generation Trans. IECE 68(4), 718–725 (1985)

    Google Scholar 

  16. Nishita, T., Nakamae, E.: A method for displaying metaballs by using Bézier clipping. Comput. Graph. Forum 13(3), 271–280 (1994)

    Article  Google Scholar 

  17. Oeltze, S., Preim, B.: Visualization of vasculature with convolution surfaces: method, validation and evaluation. IEEE Trans. Med. Imaging 24(4), 540–548 (2005)

    Article  Google Scholar 

  18. Ohtake, Y., Belyaev, A., Seidel, H.P.: A multiscale approach to 3D scattered data interpolation with compactly supported basis functions. In: Proceedings of Shape Modeling International, pp. 292–300. IEEE Computer Society, Washington, DC (2003)

    Google Scholar 

  19. Sederberg, T.W., Zundel, A.K.: Scan line display of algebraic surfaces. In: Proceedings of SIGGRAPH ’89, pp. 145–156. ACM, New York, NY (1989)

    Google Scholar 

  20. Shen, C., O’Brien, J.F., Shewchuk, J.R.: Interpolating and approximating implicit surfaces from polygon soup. ACM Trans. Graph. 23(3), 896–904 (2004)

    Article  Google Scholar 

  21. Sherstyuk, A.: Kernel functions in convolution surfaces: a comparative analysis. Visual Comput. 15(4), 171–182 (1999)

    Article  MATH  Google Scholar 

  22. Turk, G., O’Brien, J.F.: Modeling with implicit surfaces that interpolate. ACM Trans. Graph. 21(4), 855–873 (2002)

    Article  Google Scholar 

  23. Wyvill, B., Wyvill, G.: Field functions for implicit surfaces. Visual Comput. 5(1–2), 75–82 (1989)

    Article  MATH  Google Scholar 

  24. Wyvill, G., McPheeters, C., Wyvill, B.: Data structure for oft objects. Visual Comput. 2(4), 227–234 (1986)

    Article  Google Scholar 

  25. Yngve, G., Turk, G.: Robust creation of implicit surfaces from polygonal meshes. IEEE Trans. Vis. Comput. Graph. 21(4), 346–355 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, X., Tai, CL. & Zhang, H. Implicit modeling from polygon soup using convolution. Vis Comput 25, 279–288 (2009). https://doi.org/10.1007/s00371-008-0267-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-008-0267-3

Keywords

Navigation