Skip to main content
Log in

Variational sphere set approximation for solid objects

  • Special Issue Paper
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We approximate a solid object represented as a triangle mesh by a bounding set of spheres having minimal summed volume outside the object. We show how outside volume for a single sphere can be computed using a simple integration over the object’s triangles. We then minimize the total outside volume over all spheres in the set using a variant of iterative Lloyd clustering that splits the mesh points into sets and bounds each with an outside volume-minimizing sphere. The resulting sphere sets are tighter than those of previous methods. In experiments comparing against a state-of-the-art alternative (adaptive medial axis), our method often requires half as many spheres, or fewer, to obtain the same error, under a variety of error metrics including total outside volume, shadowing fidelity, and proximity measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: SMA ’01: Proceedings of the 6th ACM Symposium on Solid Modeling and Applications, pp. 249–266. ACM Press, New York (2001)

    Chapter  Google Scholar 

  2. van den Bergen, G.: Efficient collision detection of complex deformable models using AABB trees. J. Graph. Tools 2(4), 1–13 (1997)

    MATH  MathSciNet  Google Scholar 

  3. Bradshaw, G., O’Sullivan, C.: Adaptive medial-axis approximation for sphere-tree construction. ACM Trans. Graph. 23(1), 1–26 (2004)

    Article  Google Scholar 

  4. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graph. 23(3), 905–914 (2004)

    Article  Google Scholar 

  5. Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A hierarchical structure for rapid interference detection. In: Proc. of ACM SIGGRAPH 1996, pp. 171–180 (1996)

  6. Hubbard, P.: Interactive collision detection. In: Proceedings of the 1993 IEEE Symposium on Research Frontiers in Virtual Reality, 14(2), 24–31 (1993)

  7. Hubbard, P.: Collision detection for interactive graphics applications. PhD thesis, Brown University (1995)

  8. Hubbard, P.: Approximating polyhedra with spheres for time-critical collision detection. ACM Trans. Graph. 15(3), 179–210 (1996)

    Article  Google Scholar 

  9. James, D.L., Pai, D.K.: BD-tree: output-sensitive collision detection for reduced deformable models. ACM Trans. Graph. 23(3), 393–398 (2004)

    Article  Google Scholar 

  10. Klosowski, J.T., Held, M., Mitchell, J., Sowizral, H., Zikan, K.: Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Trans. Visual. Comput. Graph. 4(1), 21–36 (1998)

    Article  Google Scholar 

  11. Krishnan, S., Pattekar, A., Lin, M., Manocha, D.: Spherical shells: A higher-order bounding volume for fast proximity queries. In Proceedings of the 1998 Workshop on the Algorithmic Foundations of Robotics, pp. 122–136. Rice University (1998)

  12. Liu, Y., Noborio, J., Arimoto, S.: Hierarchical sphere model HSM and its application for checking an interference between moving robots. In Proceedings of the IEEE International Workshop on Intelligent Robots and Systems, pp. 801–806 (1988)

  13. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inform. Theory IT-28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  14. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, New York (1992)

    Google Scholar 

  15. Quinlan, S.: Efficient distance computation between non-convex objects. In Proceedings IEEE International Conference on Robotics and Automation, pp. 3324–3329 (1994)

  16. Ranjan, V., Fournier, A.: Union of spheres (UoS) model for volumetric data. In: SCG ’95: Proceedings of the 11th Annual Symposium on Computational Geometry, pp. 402–403. ACM Press, New York (1995)

    Chapter  Google Scholar 

  17. Ren, Z., Wang, R., Snyder, J., Zhou, K., Liu, X., Sun, B., Sloan, P., Bao, H., Peng, Q., Guo, B.: Real-time soft shadows in dynamic scenes using spherical harmonic exponentiation. ACM Trans. Graph. 25(3), 977–986 (2006)

    Article  Google Scholar 

  18. Rusinkiewicz, S., Levoy, M.: QSplat: A multiresolution point rendering system for large meshes. In: Proc. ACM SIGGRAPH 2000, pp. 343–352 (2000)

  19. Ruspini, D.C., Kolarov, K., Khatib, O.: The haptic display of complex graphical environments. In: Proc. of ACM SIGGRAPH 1997, pp. 345–352 (1997)

  20. Sloan, P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans. Graph. 21(3), 527–536 (2002)

    Article  Google Scholar 

  21. Tam, R.C., Fournier, A.: Image interpolation using unions of spheres. Visual Comput. 14, 401–414 (1998)

    Article  Google Scholar 

  22. Tao, J., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24(3), 561–566 (2005)

    Article  Google Scholar 

  23. Turk, G.: Generating random points in triangles. In: Graphics Gems, pp. 24–28. Academic Press Professional, San Diego, CA (1990)

    Google Scholar 

  24. Wu, J., Kobbelt, L.: Structure recovery via hybrid variational surface approximation. Comput. Graph. Forum 24(3), 277–284 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Zhou, K., Snyder, J. et al. Variational sphere set approximation for solid objects. Visual Comput 22, 612–621 (2006). https://doi.org/10.1007/s00371-006-0052-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-006-0052-0

Keywords

Navigation