Skip to main content
Log in

A Linearization Technique for Solving General 3-D Shape Optimization Problems in Spherical Coordinates

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

Regarding the some useful advantages of spherical coordinates for some special problems, in this paper, based on Radon measure properties, we present a new and basic solution method for general shape optimization problems defined in spherical coordinates. Indeed, our goal is to determine a bounded shape located over the (xy)-plane, such that its projection in the (xy)-plane and its volume is given and also it minimizes some given surface integral. To solve these kinds of problems, we somehow extend the embedding process in Radon measures space. First, the problem is converted into an infinite-dimensional linear programming one. Then, using approximation scheme and a special way for discretization in spherical region, this problem is reduced to a finite-dimensional linear programming one. Finally, the solution of this new problem is used to construct a nearly optimal smooth surface by applying an outlier detection algorithm and curve fitting. More than reducing the complexity, this approach in comparison with the other methods has some other advantages: linear treatment for even nonlinear problems, and the minimization is global and does not depend on initial shape and mesh design. Numerical examples are also given to demonstrate the effectiveness of the new method, especially for classical and obstacle problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alimorad, H.: Introducing shape-measure method for designing 3-D optimal shapes. Ph. D Thesis mathematics, Shiraz University of Technology, Shiraz, Iran (2015)

  2. Allaire, G., Jouve, F.: A level-set method for variation and multiple loads structural optimization. Comput. Methods Appl. Mech. Eng. 194, 3269–3290 (2005)

    Article  MATH  Google Scholar 

  3. Allalrf, G., Jouv, F.: A level-set method for variation and multiple loads structural optimization. Comput. Methods Appl. Mech. Eng. 194, 3269–3290 (2005)

    Article  Google Scholar 

  4. Antonietti, P.F., Bigoni, N., Verani, M.: Mimetic finite difference method for shape optimization problems. In: Barth, T.J., Griebel, M., Keyes, D.E., Nieminen, R.M., Roose, D., Schlick, T. (eds.) Numerical Mathematics and Advanced Applications, pp. 125–132 (2013)

  5. Burman, E., Elfverson, D., Hansbo, P., Larson, M.G., Larsson, K.: Shape optimization using the cut finite element method. Comput. Methods Appl. Mech. Eng. 328, 242–261 (2018)

    Article  MathSciNet  Google Scholar 

  6. Canelas, A., Herskovits, J., Telles, J.C.F.: Shape optimization using the boundary element method and a SAND interior point algorithm for constrained optimization. Comput. Struct. 86, 1517–1526 (2008)

    Article  Google Scholar 

  7. Cheng, D.K.: Field and Wave Electromagnetics, 2nd edn. Addison-Wesley, Pearson (1989)

    Google Scholar 

  8. Fakharzadeh, A.: Shapes, measure and elliptic equations. Ph.D Thesis Mathematics, University of Leeds, Leeds, England (1996)

  9. Fakharzadeh, A., Rubio, J.E.: Best domain for an elliptic problem in cartesian coordinates by means of shape-measure. Asian J. Control 11, 536–547 (2009)

    Article  MathSciNet  Google Scholar 

  10. Farahi, M.H., Borzabadi, A.H., Mehneh, H.H., Kamyad, A.V.: Measure theoretical approach for optimal shape design of a nozzle. J. Appl. Math. Comput. 17, 315–328 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Farahi, M.H., Mehne, H.H., Borzabadi, A.H.: Wing drag minimization by using measure theory. Optim. Methods Softw. 21, 169–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Friedman, A.: Variational Principles and Free Boundary Problems. Wiley, New York (1982)

    MATH  Google Scholar 

  13. Haslinger, J., Neittaanmaki, P.: Finite Element Approximation for Optimal Shape Design: Theory and Application. Wiley, New York (1988)

    MATH  Google Scholar 

  14. Haslinger, J., Neitaanmaki, P.: Finite Element Approximation for Optimal Shape, Material and Topology Design, 2nd edn. Wiley, Chichester (1996)

    MATH  Google Scholar 

  15. Hawkins, D.: Identication of Outliers. Chapman and Hall, London (1980)

    Book  Google Scholar 

  16. Khludnev, A.M., Sokolowski, J.: Modelling and Control in Solid Mechanics. Birkhauser, Basel (1997)

    MATH  Google Scholar 

  17. Kim, N.H., Choi, K.K., Botkin, M.E.: Numerical method for shape optimization using meshfree method. Struct. Multidiscip. Optim. 24, 418–429 (2002)

    Article  Google Scholar 

  18. Kriegel, H.-P., Kroger, P., Schubert, E., Zimek, A.: LoOP: local outlier probabilities. In: Proceedings of the ACM Conference on Information and knowledge Management (CIKM), Hong Kong, China (2009)

  19. Majava, K., Tai, X.C.: A level set method for solving free boundary problems associated with obstacles. Int. J. Numer. Anal. Model. 1, 157–171 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Murat, F., Simon, J.: Optimal control with respect to the domain. Thesis (in French), University of Paris (1977)

  21. Murat, F., Simon, J.: Studies in Optimal Shape Design. Lecture Notes in Computer Science, vol. 41. Springer, Berlin (1976)

    Google Scholar 

  22. Nazemi, A.R., Farahi, M.H.: Shape optimization of an arterial bypass in cardiovascular systems. Iran. J. Oper. Res. 4, 127–145 (2013)

    Google Scholar 

  23. Nitsche, J.C.C.: Introduction to Minimal Surfaces. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  24. Osserman, R.: Minimal Surfaces. Springer, Berlin (1997)

    MATH  Google Scholar 

  25. Pironneau, O.: On optimal design in fluid mechanics. J. Fluid Mech. 64, 97–110 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer, New York (1983)

    MATH  Google Scholar 

  27. Rodrigues, J.F.: Obstacle Problems in Mathematical Physics. North-Holland, Amsterdam (1989)

    Google Scholar 

  28. Royden, H.L.: Real Analysis, 3rd edn. Macmillan, New York (1988)

    MATH  Google Scholar 

  29. Rubio, J.E.: Control and Optimization; the Linear Treatment of Non-linear Problems. Manchester University Press, Manchester (1986)

    MATH  Google Scholar 

  30. Rudin, W.: Real and Complex Analysis, 2nd edn. Tata McGraw-Hill Publishing Co Ltd., New Dehli (1983)

    MATH  Google Scholar 

  31. Sokolowski, J., Zolesio, J.-P.: Introduction to Shape Optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  32. Thomas, G.B., Finney, R.L.: Calculus and Analytic Geometry, 9th edn. Addison-Wesley, Boston (1998)

    MATH  Google Scholar 

  33. Wang, D., Sun, S., Chen, Xi, Yu, Z.: A 3D shape descriptor based on spherical harmonics through evolutionary optimization. Neurocomputing 194, 183–191 (2016)

    Article  Google Scholar 

  34. Wilmott, P., Howison, S., Dewynne, J.: The Mathematics of Financial Derivative. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  35. Wilson, D.A., Rubio, J.E.: Existence of optimal controls for the diffusion equation. J. Optim. Theory Appl. 22, 91–101 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  36. Young, L.C.: Calculus of Variations and Optimal Control Theory. AMS Chelsea Publishing, Philadelphia (1969)

    MATH  Google Scholar 

  37. Zhang, X., Rayasam, M., Subbarayan, G.: A meshless, compositional approach to shape optimal design. Comput. Methods Appl. Mech. Eng. 196, 2130–2146 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Fakharzadeh Jahromi.

Additional information

Communicated by Sohrab Effati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakharzadeh Jahromi, A., Goodarzi, M. A Linearization Technique for Solving General 3-D Shape Optimization Problems in Spherical Coordinates. Bull. Iran. Math. Soc. 44, 857–877 (2018). https://doi.org/10.1007/s41980-018-0046-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-018-0046-5

Keywords

Mathematics Subject Classification

Navigation