Skip to main content

Advertisement

Log in

New insights into microbially induced sedimentary structures in alkaline hypersaline El Beida Lake, Wadi El Natrun, Egypt

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Microbially induced sedimentary structures (MISS) were studied in detail in the alkaline hypersaline El Beida Lake of Wadi El Natrun in the western desert sector of Egypt, based on field observations and sampling performed in 2013 and 2014. Geomorphologically, the lake can be subdivided into three zones, each with characteristic sedimentary and biosedimentary structures. The marginal elevated zone that borders the lake is characterized by thick blocky crusts devoid of microbial mats. The middle–lower supratidal zone has luxuriant microbial mats associated with knotty surfaces, mat cracks and wrinkle structures. A zone of ephemeral shallow pools and channels is characterized by reticulate surfaces, pinnacle mats, sieve-like surfaces, gas domes and mat chips. In the microbial mats, authigenic minerals include thenardite Na2SO4, trona Na3(CO3)(HCO3)•2H2O and halite NaCl. Scanning electron microscopy (SEM) analyses revealed that the minerals are closely associated with the MISS, suggesting some influence of microorganisms on mineral precipitation. Complex interactions between regional hydrological cycles and diagenetic processes imply low preservation potential. MISS signatures of such saline lakes can serve as key analogues for interpreting the geologic record.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abd El Ghani M, Hamdy R, Hamed A (2014) Aspects of vegetation and soil relationships around athalassohaline lakes of Wadi El-Natrun, Western Desert, Egypt. J Biol Earth Sci 4(1):B21–B35

    Google Scholar 

  • Abd-el-Malek Y, Rizk SG (1963) Bacterial sulfate reduction and the development of alkalinity. III. Experiments under natural conditions in the Wadi Natrûn. J Appl Microbiol 26:20–26

    Google Scholar 

  • Abu Khadra A (1973) Geological and sedimentological studies of Wadi El-Natrun district, Western Desert, Egypt. PhD Thesis, Cairo University, Egypt

  • Abu Zeid KA (1984) Contribution to the geology of Wadi El-Natrun area and its surroundings. MSc Thesis, Cairo University, Egypt

  • Aref MAM, Basyoni MH, Bachmann GH (2014) Microbial and physical sedimentary structures in modern evaporitic environments of Saudi Arabia and Egypt. Facies 60(2):371–388

    Article  Google Scholar 

  • Attia AKM, Hilmy ME, Bolous SN (1970) Mineralogy of the encrustation deposits of Wadi El-Natrun. Desert Inst Bull 2:301–325

    Google Scholar 

  • Bauld J (1986) Benthic microbial communities of Australian saline lakes. In: de Deckker P, Williams WD (eds) Limnology in Australia. W. Junk, Boston, pp 95–111

    Chapter  Google Scholar 

  • Bosak T, Liang B, Sim MS, Petroff AP (2009) Morphological record of oxygenic photosynthesis in conical stromatolites. Proc Natl Acad Sci USA 106:10939–10943

    Article  Google Scholar 

  • Bosak T, Bush JWM, Flynn MR, Liang B, Ono S, Petroff AP, Sim MS (2010) Formation and stability of oxygen-rich bubbles that shape photosynthetic mats. Geobiology 8:45–55

    Article  Google Scholar 

  • Bose S, Chafetz HS (2009) Topographic control on distribution of modern microbially induced sedimentary structures (MISS): a case study from Texas coast. Sediment Geol 213:136–149

    Article  Google Scholar 

  • Bouougri EH, Porada H (2007) Complex structures associated with siliciclastic biolaminites. In: Schieber J, Bose PK, Eriksson PG, Banerjee S, Sarkar S, Altermann W, Catuneanu O (eds) Atlas of microbial mat features preserved within the siliciclastic rock record. Atlases in Geoscience, vol 2. Elsevier, Amsterdam, pp 111–115

    Google Scholar 

  • Bouougri EH, Porada H, Reitner J, Gerdes G (2012) Introduction to the special issue “Signatures of microbes and microbial mats and the sedimentary record”. Sediment Geol 263–264:1–5

    Article  Google Scholar 

  • Browne KM, Golubic S, Seong-Joo L (2000) Shallow marine microbial carbonate deposits. In: Riding RE, Awaramik SM (eds) Microbial sediments. Springer, Berlin, pp 233–249

    Chapter  Google Scholar 

  • Buczynski C, Chafetz HS (1993) Habit of bacterially induced precipitates of calcium carbonate: examples from laboratory experiments and recent sediments. In: Rezak R, Lavoie DL (eds) Carbonate microfacies. Springer, New York, pp 105–116

    Chapter  Google Scholar 

  • Calner M, Eriksson ME (2012) The record of microbially induced sedimentary structures (MISS) in the Swedish Paleozoic. In: Noffke N, Chafetz H (eds) Microbial mats in siliciclastic depositional systems through time. SEPM Spec Publ 101:29–36

  • Carmona NB, Ponce JJ, Wetzel A, Bournod CN, Cuadrado DG (2012) Microbially induced sedimentary structures in Neogene tidal flats from Argentina: paleoenvironmental, stratigraphic and taphonomic implications. Palaeogeogr Palaeoclimatol Palaeoecol 353–355:1–9

    Article  Google Scholar 

  • Cuadrado D, Perillo GME, Vitale AJ (2014) Modern microbial mats in siliciclastic tidal flats: evolution, structure and the role of hydrodynamics. Mar Geol 352:367–380

    Article  Google Scholar 

  • Decho AW (2000) Exopolymer microdomains as a structuring agent for heterogeneity within microbial biofilms. In: Riding R, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 9–15

    Chapter  Google Scholar 

  • Duane MJ, Reinink-Smith L, Eastoe C, Al-Mishwat AT (2015) Mud volcanoes and evaporite seismites in a tidal flat of northern Kuwait—implications for fluid flow in sabkhas of the Persian (Arabian) Gulf. Geo-Mar Lett 35:237–246. doi:10.1007/s00367-015-0403-9

    Article  Google Scholar 

  • El Hadidi MN (1993) Natural vegetation. In: Graig GM (ed) The agriculture of Egypt. Oxford University Press, London, pp 39–62

    Google Scholar 

  • Eriksson PG, Simpson EL, Eriksson KA, Bumby AJ, Steyn GL, Sarkar S (2000) Muddy roll-up structures in siliciclastic interdune beds of the c. 1.8 Ga Waterberg Group, South Africa. Palaios 15:177–183

    Article  Google Scholar 

  • Eriksson PG, Schieber J, Bouougri E, Gerdes G, Porada H, Banerjee S, Bose PK, Sarkar S (2007) Classification of structures left by microbial mats in their host sediments. In: Schieber J, Bose PK, Eriksson PG, Banerjee S, Sarkar S, Altermann W, Catuneanu O (eds) Atlas of microbial mat features preserved within the clastic rock record. Elsevier, Amsterdam, pp 39–52

    Google Scholar 

  • Eriksson PG, Bartman R, Catuneanu O, Mazumder R, Lenhardt N (2012) A case study of microbial mat-related features in coastal epeiric sandstones from the Paleoproterozoic Pretoria Group (Transvaal Supergroup, Kaapvaal craton, South Africa): the effect of preservation (reflecting sequence stratigraphic models) on the relationship between mat features and inferred paleoenvironment. Sediment Geol 263–264:67–75

    Article  Google Scholar 

  • Flannery DT, Walter MR (2012) Archean tufted microbial mats and the Great Oxidation Event: new insights into an ancient problem. Aust J Earth Sci 59(1). doi:10.1080/08120099.2011.607849

  • Gerdes G (2007) Structures left by modern microbial mats in their host sediment. In: Schieber J, Bose PK, Eriksson PG, Banerjee S, Sarkar S, Altermann W, Catuneanu O (eds) Atlas of microbial mat features preserved within the siliciclastic rock record. Elsevier, Amsterdam, pp 5–38

    Google Scholar 

  • Gerdes G (2010) What are microbial mats? In: Seckbach J, Oren A (eds) Microbial mats. Modern and ancient microorganisms in stratified systems. Springer, Dordrecht, pp 5–28

    Google Scholar 

  • Gerdes G, Klenke T (2003) Geologische Bedeutung ökologischer Zeitrӓume in biogener Schichtung (Mikrobenmatten, potentielle Stromatolithe). Mitt Ges Geol Bergbaustud Öster 46:35–49

    Google Scholar 

  • Gerdes G, Krumbein WE (1987) Biolaminated deposits. Lecture Notes in Earth Sciences, vol 9. Springer, Berlin

    Google Scholar 

  • Gerdes G, Krumbein WE, Reineck HE (1994) Microbial mats as architects of sedimentary surface structures. In: Krumbein WE, Stal LJ, Paterson DM (eds) Biostabilization of sediments. BIS, Oldenburg, pp 165–182

    Google Scholar 

  • Gerdes G, Klenke T, Noffke N (2000) Microbial signatures in peritidal siliciclastic sediments: a catalogue. Sedimentology 47:279–308

    Article  Google Scholar 

  • Giani D, Seeler J, Giani L, Krumbein WE (1989) Microbial mats and physicochemistry in a saltern in the Bretagne (France) and in a laboratory scale saltern model. FEMS Microb Ecol 62:151–162

    Article  Google Scholar 

  • Goodall M, North CP, Glennie KW (2000) Surface and subsurface sedimentary structures produced by salt crusts. Sedimentology 47:99–118

    Article  Google Scholar 

  • Grünke S, Lichtschlag A, de Beer D, Felden J, Salman V, Ramette A, Schulz-Vogt HN, Boetius A (2012) Mats of psychrophilic thiotrophic bacteria associated with cold seeps of the Barents Sea. Biogeosciences 9:2947–2960

    Article  Google Scholar 

  • Guerrero MC, de Wit R (1992) Microbial mats in the inland saline lakes of Spain. Limnetica 8:197–204

    Google Scholar 

  • Hagadorn JW, Bottjer DJ (1999) Restriction of a late Neoproterozoic biotope: suspect microbial structures and trace fossils at the Vendian–Cambrian transition. In: Hagadorn JW, Pflüger F, Bottjer DJ (eds) Unexplored microbial worlds. Palaios 14:73–85

  • Hagadorn JW, McDowell C (2012) Microbial influence on erosion, grain transport and bedform genesis in sandy substrates under unidirectional flow. Sedimentology 59:795–808

    Article  Google Scholar 

  • Jeanthon C (2000) Molecular ecology of hydrothermal vent microbial communities. Antonie van Leeuwenhoek 77:117–133

    Article  Google Scholar 

  • Jørgensen BB (1989) Light penetration, absorption and action spectra in cyanobacterial mats. In: Cohen Y, Rosenberg E (eds) Microbial mats. Physiological ecology of benthic microbial communities. ASM, Washington, DC, pp 123–137

    Google Scholar 

  • Kilias S (2011) Microbial mat-related structures in the Quaternary Cape Vani manganese oxide (-barite) deposit, NW Milos Island, Greece. In: Noffke N, Chafetz H (eds) Microbial mats in siliciclastic depositional systems through time. SEPM Spec Publ 101:97–110

  • Knoll A, Canfield D, Konhauser K (2012) Fundamentals of geobiology. Wiley-Blackwell, London

    Book  Google Scholar 

  • Krumbein WE, Cohen Y (1977) Primary production, mat formation and lithification: contribution of oxygenic and facultative anoxygenic cyanobacteria. In: Flügel E (ed) Fossil algae. Springer, Berlin, pp 37–56

    Chapter  Google Scholar 

  • Mata SA, Bottjer DJ (2009) The paleoenvironmental distribution of Phanerozoic wrinkle structures. Earth-Sci Rev 96:181–195

    Article  Google Scholar 

  • Mesbah MN, Abou-El-Ela SH, Wiegel J (2007) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microb Ecol 54:598–617

    Article  Google Scholar 

  • Nakhla FM, Saleh SA, Gad NL (1985) Mineralogy, chemistry and paragenesis of the thenardite (Na2SO4). In: Applied mineralogy. Metallurgical Society, AIME, New York, pp 1001–1013

  • Noffke N (1998) Multidirected ripple marks rising from biological and sedimentological processes in modern lower supratidal deposits (Mellum Island, southern North Sea). Geology 26:879–882

    Article  Google Scholar 

  • Noffke N (2000) Extensive microbial mats and their influences on the erosional and depositional dynamics of a siliciclastic cold water environment (Lower Arenigian, Montagne Noire, France). Sediment Geol 136:207–215

    Article  Google Scholar 

  • Noffke N (2010) Microbial mats in sandy deposits from the Archean era to today. Springer, Berlin

  • Noffke N (2015) Ancient sedimentary structures in the <3.7 Ga Gillespie Lake Members, Mars that resemble macroscopic morphology, spatial associations, and temporal succession in terrestrial microbialites. Astrobiology 15(2):169–192

    Article  Google Scholar 

  • Noffke N, Krumbein WE (1999) A quantitative approach to sedimentary surface structures controlled by the interplay of microbial colonization and physical dynamics. Sedimentology 46:417–426

    Article  Google Scholar 

  • Noffke N, Gerdes G, Klenke T, Krumbein WE (1997) A microscopic sedimentary succession indicating the presence of microbial mats in siliciclastic tidal flats. Sediment Geol 110:1–6

    Article  Google Scholar 

  • Noffke N, Gerdes G, Klenke T, Krumbein WE (2001) Microbially induced sedimentary structures—A new category within the classification of primary sedimentary structures. J Sediment Res 71:649–656

    Article  Google Scholar 

  • Noffke N, Beukes N, Hazen R, Swift D (2008) An actualistic perspective into Archean worlds – (cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup, South Africa. Geobiology 6:5–20

    Article  Google Scholar 

  • Noffke N, Decho AW, Stoodley P (2013) Slime through time: the fossil record of prokaryote evolution. Palaios 28:1–5

    Article  Google Scholar 

  • Park K (1977) The preservation potential of some recent stromatolites. Sedimentology 24:485–506

    Article  Google Scholar 

  • Pavlov M (1962) Preliminary report on the ground water beneath the Wadi El-Natrun and adjacent areas. Report to General Desert Development Organization of U.A.R. Desert Institute, Cairo

  • Phillip G, Barakat MG, Abu Khadrah A (1975) Stratigraphy and mechanical analysis of Neogene sediments in Wadi El-Natrun area, Egypt. Faculty of Science, Cairo University, Bull no 48

  • Saleh AH (2004) Sedimentological and evaluation studies of the Pliocene clays and their ability in industrial application in and around Wadi-El Natrun, Western Desert, Egypt. MSc Thesis, Menofiya University, Egypt

  • Sarkar S, Banerjee S, Samanta P, Jeevankumar S (2006) Microbial mat-induced sedimentary structures in siliciclastic sediments: examples from the 1.6 Ga Chorhat Sandstone, Vindhyan Supergroup, M.P., India. J Earth Syst Sci 115(1):49–60

    Article  Google Scholar 

  • Schieber J, Bose PK, Eriksson PG, Sarkar S (2007) Palaeogeography of microbial mats in terrigenous clastics—environmental distribution of associated sedimentary features and the role of geologic time. In: Schieber J, Bose PK, Eriksson PG, Banerjee S, Sarkar S, Altermann W, Catuneanu O (eds) Atlas of microbial mat features preserved within the siliciclastic rock record, vol 2, Atlases in Geoscience. Elsevier, Amsterdam, pp 267–275

    Google Scholar 

  • Shata A, El-Fayoumi IF (1967) Geomorphological and morphopedological aspects of the region west of the Nile Delta with special reference to Wadi El-Natrun area. Bull Inst Désert Egypte 12(1):1–38

    Google Scholar 

  • Shepard RN, Sumner DY (2010) Undirected motility of filamentous cyanobacteria produces reticulate mats. Geobiology 8(3):179–190

    Article  Google Scholar 

  • Shortland AJ (2004) Evaporites of the Wadi Natrun: seasonal and annual variation and its implication for ancient exploitation. Archaeometry 46(4):497–516

    Article  Google Scholar 

  • Shortland AJ, Degryse P, Walton M, Geer M, Lauwers V, Salou L (2011) The evaporitic deposits of Lake Fazda (Wadi Natrun, Egypt) and their use in Roman glass production. Archaeometry 53(5):916–929

    Article  Google Scholar 

  • Smoot JP, Castens-Seidell B (1994) Sedimentary features produced by efflorescent salt crusts, Saline Valley and Death Valley, California. In: Renaut RW, Last WM (eds) Sedimentology and geochemistry of modern and ancient lakes. SEPM Spec Publ 50:73–90

  • Stal LJ, Gemerden H, Krumbein WE (1985) Structure and development of benthic marine microbial mats. FEMS Microb Ecol 31:111–125

    Article  Google Scholar 

  • Sturchio N, Sultan M, El-Alfy Z, Taher AG, El-Maghraby A, El-Anabaawy M (1998) Geochemistry and origin of ground water in the newly reclaimed agricultural lands, western Nile Delta, Egypt: preliminary isotopic results. In: Proc 4th Int Conf Geology of the Arab World. Cairo University, Egypt

  • Taher AG (1999) Inland saline lakes of Wadi El Natrun depression, Egypt. Int J Salt Lake Res 8:149–169

    Google Scholar 

  • Taher AG (2014a) Formation and calcification of modern gypsum-dominated stromatolites, EMISAL, Fayium, Egypt. Facies 60:721–735

    Article  Google Scholar 

  • Taher AG (2014b) Microbially induced sedimentary structures in evaporite–siliciclastic sediments of Ras Gemsa sabkha, Red Sea Coast, Egypt. J Adv Res 5:577–586

    Article  Google Scholar 

  • Taher AG, Abdel Motelib A (2014) Microbial stabilization of sediments in a recent Salina, Lake Aghormi, Siwa Oasis, Egypt. Facies 60:45–52

    Article  Google Scholar 

  • Taher AG, Soliman A (1999) Heavy metals concentrations in surficial sediments from Wadi El-Natrun saline lakes, Egypt. Int J Salt Lake Res 8:75–92

    Google Scholar 

  • Taher AG, Abdel Wahab S, Krumbein WE, Philip G, Wali A (1994) On heavy metal concentrations and biogenic enrichment in microbial mats. Miner Deposita 29:427–429

    Article  Google Scholar 

  • Thomas K, Herminghaus S, Porada H, Goehring L (2013) Formation of Kinneyia via shear-induced instabilities in microbial mats. Philos Trans R Soc A 371:20120362. doi:10.1098/rsta.2012.0362

    Article  Google Scholar 

  • Warren JK (1982) The hydrogeological significance of Holocene tepees, stromatolites, and boxwork limestones in coastal salinas in South Australia. J Sediment Petrol 52:1171–1201

    Google Scholar 

  • Warren JK (2010) Evaporites through time: tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Sci Rev 98:217–268

    Article  Google Scholar 

  • Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6(3):415–422

    Article  Google Scholar 

  • Wrede C, Kokoschka S, Dreier A, Heller C, Reitner J, Hoppert M (2013) Deposition of biogenic iron minerals in a methane oxidizing microbial mat. Archaea, 102972. doi:10.1155/2013/102972

  • Yallop ML, de Winder B, Paterson DM, Stal LJ (1994) Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos. Estuar Coastal Shelf Sci 39:565–582

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge constructive reviews from Drs. N. Noffke and D. Cuadrado, as well as the journal editors. Sincere thanks are extended to Dr. G.J. Tassie (University of North Cornwall, UK) for English editing and critical reading, Dr. M. Abdel Moaty (Egyptian Geological Survey) for SEM analyses, and S. El Tayar (Cairo University) for field and laboratory assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amany G. Taher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taher, A.G., Abdel-Motelib, A. New insights into microbially induced sedimentary structures in alkaline hypersaline El Beida Lake, Wadi El Natrun, Egypt. Geo-Mar Lett 35, 341–353 (2015). https://doi.org/10.1007/s00367-015-0411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-015-0411-9

Keywords

Navigation