Skip to main content
Log in

Validation of impact penetrometer data by cone penetration testing and shallow seismic data within the regional geology of the Southern North Sea

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

This study presents the assessment of total cone resistance from in situ deceleration measurements using the Lance Insertion Retardation meter (LIRmeter) in the Southern North Sea. The penetrometer is equipped with a measurement lance that is up to 6 m in length. The aim was to validate LIRmeter data interpretation within the regional geological context by comparison with static velocity cone penetration testing (CPT) and sub-bottom profiles. In total, 13 datasets were taken, in addition to preexisting hydroacoustical and static velocity CPT datasets. The dynamically acquired data were processed and compared to the reference static velocity data. The validation encourages the use of acceleration-based dynamic penetration tests, since a high degree of agreement was demonstrated between independently acquired dynamic and static cone resistance data. Moreover, the results reveal evidence of two successive formations with different geotechnical properties, consistent with existing knowledge on the regional setting. Additionally, there is novel indication of an incised glacial valley with muddy low-permeability sediments extending much further than reported to date, which would necessitate updating of older maps. The main advantage of penetrometer-based deceleration measurements lies in the robustness of the method, and the reliability of the sensors. However, penetration depth is, for dimensioning reasons, limited to the order of a few meters. Additionally, data processing includes the dependency of knowledge about the soil type to correct the dynamic data. These limitations can be satisfactorily outweighed by combination with reference data from static velocity tests, as demonstrated by integrating these data into a soil classification scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • ASTM (2012) Standard test method for electronic friction cone and piezocone penetration testing of soils. ASTM D 5778 12. American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  • Aubeny CP, Shi H (2006) Interpretation of impact penetration measurements in soft clays. J Geotech Geoenviron Eng 123(6):770–777. doi:10.1061/(ASCE)0733-9410(1985)111:9(1108)

    Article  Google Scholar 

  • Baligh MM (1985) Strain path method. J Geotech Eng 111(9):1108–1136. doi:10.1061/(ASCE)0733-9410(1985)111:9(1108)

    Article  Google Scholar 

  • Biscontin G, Pestana JM (2001) Influence of peripheral velocity on vane shear strength of an artificial clay. Geotech Test J 24(4):423–429. doi:10.1520/GTJ11140J

    Article  Google Scholar 

  • BODC (2009) GEBCO Gridded Global Bathymetry Data, GEBCO_08 Grid. British Oceanographic Data Centre, Liverpool

    Google Scholar 

  • Bowen DQ (1999) A revised correlation of Quaternary deposits in the British Isles, vol 23. Geological Society Publishing House, Bath

    Google Scholar 

  • Cameron TDJ (ed) (1992) United Kingdom Offshore Regional Report: the Geology of the Southern North Sea. H.M.S.O. for the British Geological Survey, London

    Google Scholar 

  • Cameron TDJ, Laban C, Mesdag C, Schüttenhelm RTE (1986) Indefatigable Sheet/Kaartblad 53° N–02° E. Geology/Geologie von het Kwartair. British Geol Surv / Rijks Geol Dienst, Quaternary

    Google Scholar 

  • Cameron TDJ, Stoker MS, Long D (1987) The history of Quaternary sedimentation in the UK sector of the North Sea Basin. J Geol Soc 144(1):43–58

    Article  Google Scholar 

  • Cameron T, Schüttenhelm RTE, Laban C (1989a) Middle and upper Pleistocene and Holocene stratigraphy in the Southern North Sea between 52° and 54° N, 2° to 4° E. In: Henriet J, De Moor G (eds) The Quaternary and Tertiary geology of the Southern Bight, North Sea. Belgian Geological Survey, Brussels, pp 119–135, chap 12

    Google Scholar 

  • Cameron TDJ, Laban C, Schüttenhelm RTE (1989b) Upper Pliocene and lower Pleistocene stratigraphy in the Southern Bight of the North Sea. In: Henriet J, De Moor G (eds) The Quaternary and Tertiary geology of the Southern Bight, North Sea. Belgian Geological Survey, Brussels, pp 97–110, chap 10

    Google Scholar 

  • Carr S (1999) The micromorphology of Last Glacial Maximum sediments in the Southern North Sea. Catena 35:123–145. doi:10.1016/S0341-8162(98)00097-6

    Article  Google Scholar 

  • Carr SJ, Holmes R, van der Meer JJM, Rose J (2006) The Last Glacial Maximum in the North Sea Basin: micromorphological evidence of extensive glaciation. J Quat Sci 21(2):131–153. doi:10.1002/jqs.950

    Article  Google Scholar 

  • Chow SH, Airey DW (2013) Soil strength characterisation using free-falling penetrometers. Géotechnique 63:1131–1143. doi:10.1680/geot.12.P.129

    Article  Google Scholar 

  • Chow SH, Airey DW (2014) Free-falling penetrometers: a laboratory investigation in clay. J Geotech Geoenviron Eng 140(1):201–214. doi:10.1061/(ASCE)GT.1943-5606.0000973

    Article  Google Scholar 

  • Chung SF, Randolph MF (2004) Penetration resistance in soft clay for different shaped penetrometers. In: Viana da Fonseca A, Mayne PW (eds) Geotechnical and geophysical site characterization. Proc 2nd Int Conf Site Characterization, ISC’2, Porto. Millpress, Rotterdam, pp 671–677

    Google Scholar 

  • Creutzberg F, Postma H (1979) An experimental approach to the distribution of mud in the Southern North Sea. Neth J Sea Res 13(1):99–116. doi:10.1016/0077-7579(79)90036-X

    Article  Google Scholar 

  • Danziger FAB, Lunne T (2012) Rate effect on cone penetration test in sand. Geotech Eng J SEAGS & AGSSEA 43(4):72–81

    Google Scholar 

  • Dayal U (1974) Instrumented impact cone penetrometer. PhD thesis, Memorial University of Newfoundland. http://research.library.mun.ca/1036/

  • Dayal U (1980) Free fall penetrometer: a performance evaluation. Appl Ocean Res 2(1):39–43. doi:10.1016/0141-1187(80)90046-2

    Article  Google Scholar 

  • Dayal U, Allen JH (1973) Instrumented impact cone penetrometer. Can Geotech J 10(3):397–409. doi:10.1139/t73-034

    Article  Google Scholar 

  • Dayal U, Allen JH (1975) The effect of penetration rate on the strength of remoulded clay and sand samples. Can Geotech J 12:336–348. doi:10.1139/cgj-2013-0048

    Article  Google Scholar 

  • Diesing M, Ware S, Foster-Smith B, Stewart H, Long D, Vanstaen K, Forster R, Morando A (2009) Understanding the marine environment: seabed habitat investigations of the Dogger Bank offshore draft SAC. Tech rep, Joint Nature Conservation Committee, Peterborough

    Google Scholar 

  • Einav I, Randolph MF (2005) Combining upper bound and strain path methods for evaluating penetration resistance. Int J Numer Methods Eng 63:1991–2061. doi:10.1002/nme.1350

    Article  Google Scholar 

  • Fabian M, Kaul N, Gmeinder T (2008) The Bremen Lance Insertion Retardation (LIR) Meter to assess sea floor stability. Sea Technol 49(10):10–13

    Google Scholar 

  • Finnie IMS, Randolph MF (1994) Punch-through and liquefaction induced failure of shallow foundations on calcareous sediments. In: Chryssostomidis C (ed) Behaviour of offshore structures / BOSS’94, vol 1, Proc Int Conf Behaviour of Offshore Structures. Boston. Pergamon, Oxford, pp 535–540

    Google Scholar 

  • Fitch S, Thomson K, Gaffney V (2005) Late Pleistocene and Holocene depositional systems and the palaeogeography of the Dogger Bank, North Sea. Quat Res 64:185–196. doi:10.1016/j.yqres.2005.03.007

    Article  Google Scholar 

  • Geuze ECWA (1953) Résultats d’essais de pénétration en profondeur et de mise en charge de pieux-modèle. Annales Inst Tech Bâtiment Travaux Publics Paris 63–64:313–319

    Google Scholar 

  • Graham AG, Stoker MS, Lonergan L, Bradwell T, Stewart MA (2011) Quaternary glaciations 1 – Extent and chronology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Harrison D, Laban C, Schüttenhelm RTE (1987) Indefatigable Sheet/Kaartblad 53° N–02° E. Sea Bed Sediments & Holocene / Holocene en Oppervlaktesedimenten. British Geol Surv / Rijks Geol Dienst

  • Huuse M, Lykke-Andersen H (2000) Overdeepened Quaternary valleys in the eastern Danish North Sea: morphology and origin. Quat Sci Rev 19:1233–1253. doi:10.1016/S0277-3791(99)00103-1

    Article  Google Scholar 

  • Hyndman RD, Davis EE, Wright JA (1979) The measurement of marine geothermal heat flow by a multipenetration probe with digital acoustic telemetry and insitu thermal conductivity. Mar Geophys Res 4:181–205. doi:10.1007/BF00286404

    Article  Google Scholar 

  • Jansen JHF, van Weering TCE, Eisma D (1979) Late Quaternary sedimentation in the North Sea. In: The Quaternary history of the North Sea. Acta Universitatis Upsaliensis, Annum Quingentesimum Celebrantis, vol 2. Almqvist & Wiksell International, Uppsala, pp 175–187

    Google Scholar 

  • Janszen A (2012) Tunnel valleys: genetic models, sedimentary infill and 3d architecture. PhD thesis, TU Delft

  • Jeanjean P, Spikula D, Young A (2012) Technical vetting of free-fall cone penetrometer. In: Proc 7th Int Conf Offshore Site Investigation and Geotechnics: Integrated Technologies - Present and Future, 12–14 September 2012, London. Society of Underwater Technology, London, pp 179–186

    Google Scholar 

  • Jeffery D, Laban C, Niessen A, Schüttenhelm RTE (1988) Silver Well Sheet/Kaartblad 54° N–02° E. Sea Bed Sediments & Holocene / Holocene en Oppervlaktesedimenten. British Geol Surv / Rijks Geol Dienst

  • Jeffery D, Frantsen P, Laban C, Schüttenhelm RTE (1989) Silver Well Sheet/Kaartblad 54° N–02° E. Quaternary Geology / Geologie von het Kwartair. British Geol Surv / Rijks Geol Dienst

  • Jelgersma S, Oele E, Wiggers A (1979) Depositional history and coastal development in The Netherlands and the adjacent North Sea since the Eemian. In: The Quaternary history of the North Sea. Acta Universitatis Upsaliensis, Annum Quingentesimum Celebrantis, vol 2. Almqvist & Wiksell International, Uppsala, pp 115–142

    Google Scholar 

  • Kérisel J (1961) Deep foundations in sands: variation of ultimate bearing capacity with soil density, depth, diameter and speed. In: Proc 5th Int Conf Soil Mechanics and Foundation Engineering, vol 1. Dunod, Paris, pp 73–83

    Google Scholar 

  • Kosters EC, VanMierlo BEJM, Verbeek NH, Posthumus BJ, McGee TM, Brouwer J (1992) Late Quaternary stratigraphic signature, offshore from the Dutch barrier shoreline. Sediment Geol 80:199–212. doi:10.1016/0037-0738(92)90041-O

    Article  Google Scholar 

  • Kullenberg B (1947) The piston core sampler. Svensk Hydrogr-Biol Komm 1(2):1–46

    Google Scholar 

  • Low HE, Randolph MF, DeJong JT, Yafrate NJ (2008) Variable rate full-flow penetration tests in intact and remoulded soil. In: Huang A-B, Mayne PW (eds) Geotechnical and geophysical site characterization. Proc 3rd Int Conf Site Characterization, ISC’3, Taipei. Taylor & Francis, London, pp 1087–1092

    Google Scholar 

  • Lunne T (2010) The CPT in offshore soil investigations - a historic perspective. In: Proc 2nd Int Symp Cone Penetration Testing (CPT’10). Huntington Beach, CA, paper no KN4, www.cpt10.com/PDF_Files/KN4Luntci.pdf. Accessed 11 March 2015

  • Lunne T, Robertson PK, Powell JJM (1997) Cone penetration testing in geotechnical practice. Taylor & Francis, London

    Google Scholar 

  • Nazem M, Carter JP, Airey DW, Chow SH (2012) Dynamic analysis of a smooth penetrometer free-falling into uniform clay. Géotechnique 62(10):893–905. doi:10.1680/geot.10.P.055

    Article  Google Scholar 

  • O’Loughlin CD, Randolph MF, Richardson M (2004) Experimental and theoretical studies of deep penetrating anchors. In: Proc Offshore Technology Conf, Houston, TX, vol 1, OTC paper 16841, pp 2122–2132

  • O’Loughlin CD, Richardson MD, Randolph MF, Gaudin C (2013) Penetration of dynamically installed anchors in clay. Géotechnique 63(11):909–919. doi:10.1680/geot.11.P.137

    Article  Google Scholar 

  • Osler J, Furlong A, Christian H (2006) A sediment probe for the rapid assessment of seabed characteristics. In: Caiti A, Chapman NR, Hermand J-P, Jesus SM (eds) Acoustic sensing techniques for the shallow water environment. Springer, Dordrecht, pp 171–181

    Chapter  Google Scholar 

  • Parker WR, Sills GC (1990) Observation of corer penetration and sample entry during gravity coring. Mar Geophys Res 12:101–107. doi:10.1007/BF00310566

    Article  Google Scholar 

  • Perlow M, Richards AF (1977) Influence of shear velocity on vane shear strength. J Geotech Eng Div 103(1):19–32

    Google Scholar 

  • Preslan WL (1969) Accelerometer-monitored coring. In: Civil Engineering in the Oceans II, ASCE, pp 655–678.http://cedb.asce.org/cgi/WWWdisplaybn.cgi?9780872620186

  • Randolph MF (2004) Characterisation of soft sediments for offshore applications. In: Viana da Fonseca A, Mayne PW (eds) Geotechnical and geophysical site characterization, vol 1. Proc 2nd Int Conf Site Characterization, ISC’2, Porto, vol 1. Millpress, Rotterdam, pp 209–231

    Google Scholar 

  • Rijsdijk KF, Passchier S, Weerts HJT, Laban C, van Leeuwen RJW, Ebbing JHJ (2005) Revised Upper Cenozoic stratigraphy of the Dutch sector of the North Sea Basin: towards an integrated lithostratigraphic, seismostratigraphic and allostratigraphic approach. Neth J Geosci 84(2):129–146

    Google Scholar 

  • Robertson PK (1990) Soil classification using the cone penetration test. Can Geotech J 27(1):151–158. doi:10.1139/t90-014

    Article  Google Scholar 

  • Sanglerat G (1972) The penetrometer and soil exploration. Elsevier, Amsterdam

    Google Scholar 

  • Schroot BM, Schuttenhelm RTE (2003) Expressions of shallow gas in the Netherlands North Sea. Neth J Geosci 82(1):91–106

    Google Scholar 

  • Scourse JD, Ansari MH, Wingfield RTR, Harland R, Balson PS (1998) A middle Pleistocene shallow marine interglacial sequence, Inner Silver Pit, Southern North Sea: pollen and dinoflagellate cyst stratigraphy and sea-level history. Quat Sci Rev 17:871–900. doi:10.1016/S0277-3791(98)00023-7

    Article  Google Scholar 

  • Stark N, Wever TF (2009) Unraveling subtle details of expendable bottom penetrometer (XBP) deceleration profiles. Geo-Mar Lett 29:39–45. doi:10.1007/s00367-008-0119-1

    Article  Google Scholar 

  • Stark N, Kopf A, Hanff H, Stegmann S, Wilkens R (2009) Geotechnical investigations of sandy seafloors using dynamic penetrometers. In: Proc OCEANS 2009, MTS/IEEE Biloxi, Marine Technology for Our Future: Global and Local Challenges, pp 114–123. http://www.proceedings.com/07336.html

  • Stark N, Wilkens R, Ernstsen VB, Lambers-Huesmann M, Stegmann S, Kopf A (2012) Geotechnical properties of sandy seafloors and the consequences for dynamic penetrometer interpretations: quartz sand versus carbonate sand. Geotech Geol Eng 30(1):1–14. doi:10.1007/s10706-011-9444-7

    Article  Google Scholar 

  • Stegmann S, Villinger H, Kopf A (2006) Design of a modular, marine free-fall cone penetrometer. Sea Technol 47:27–33

    Google Scholar 

  • Steiner A, L’Heureux JS, Kopf A, Vanneste M, Longva O, Lange M, Haflidason H (2012) An in-situ free-fall piezocone penetrometer for characterizing soft and sensitive clays at Finneidfjord (Northern Norway). In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine Mass Movements and Their Consequences. Springer, Dordrecht, pp 99–109. doi:10.1007/978-94-007-2162-3_9

    Chapter  Google Scholar 

  • Steiner A, Kopf AJ, L’Heureux JS, Kreiter S, Stegmann S, Haflidason H, Moerz T (2014) In situ dynamic piezocone penetrometer tests in natural clayey soils – a reappraisal of strain-rate corrections. Can Geotech J 51:272–288. doi:10.1139/cgj-2013-0048

    Article  Google Scholar 

  • Stephan S, Kaul N, Stark N, Villinger H, Wever T (2011) LIRmeter: a new tool for rapid assessment of sea floor parameters. Bridging the gap between free-fall instruments and frame-based CPT. In: Proc OCEANS’11, MTS/IEEE KONA, Institute of Electrical and Electronics Engineers, pp 952–961. http://www.proceedings.com/13534.html

  • Stephan S, Kaul N, Villinger H (2012) The Lance Insertion Retardation meter (LIRmeter): an instrument for in situ determination of sea floor properties—technical description and performance evaluation. Mar Geophys Res 33:209–221. doi:10.1007/s11001-012-9156-2

    Article  Google Scholar 

  • Stoker MS, Balson PS, Long D, Tappin DR (2011) An overview of the lithostratigraphical framework for the Quaternary deposits on the United Kingdom continental shelf. Tech rep, British Geological Survey. http://www.bgs.ac.uk/downloads/start.cfm?id=2084. Accessed 11 March 2015

  • Stoll RD, Sun YF, Bitte I (2007) Seafloor properties from penetrometer tests. IEEE J Ocean Eng 32(1):57–63. doi:10.1109/JOE.2007.890943

    Article  Google Scholar 

  • Teh CI (1987) An analytical study of the cone penetration test. PhD thesis, University of Oxford.http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379985

  • van der Meer JJM, Laban CEES (1990) Micromorphology of some North Sea till samples, a pilot study. J Quat Sci 5(2):95–101. doi:10.1002/jqs.3390050202

    Article  Google Scholar 

  • Villinger H, Grigel J, Heesemann B (1999) Acceleration-monitored coring revisited. Geo-Mar Lett 19:275–281. doi:10.1007/s003670050119

    Article  Google Scholar 

  • Weaver PPE, Schultheiss PJ (1983) Detection of repenetration and sediment disturbance in open-barrel gravity cores. J Sediment Res 53(2):649–678. doi:10.1306/212F8256-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  • Wessel P, Smith WHF (1991) Free software helps map and display data. Eos Trans Am Geophys Union 72(41):441–448. doi:10.1029/90EO00319

    Article  Google Scholar 

  • Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F (2013) Generic Mapping Tools: improved version released. Eos Trans Am Geophys Union 94(45):409–410. doi:10.1002/2013EO450001

    Article  Google Scholar 

  • Young AG, Bernard BB, Remmes BD, Babb LV, Brooks JM (2011) “CPT Stinger” - an innovative method to obtain CPT data for integrated geoscience studies. OTC 21569. In: Proc Offshore Technology Conf 2011, Houston, TX. Curran, Red Hook, NY, pp 1509–1518

    Google Scholar 

  • Zagwijn WH (1974) The palaeogeographic evolution of the Netherlands during the Quaternary. Geol Mijnb 53(6):369–385

    Google Scholar 

  • Zhou H, Randolph MF (2009) Resistance of full-flow penetrometers in rate-dependent and strain-softening clay. Géotechnique 59(2):79–86. doi:10.1680/geot.2007.00164

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by funding from RWE Dea AG and RWE Innogy GmbH. The authors declare that they have no conflict of interest. We greatly appreciate cooperation with Fugro that enabled the field trials and comparative measurements, as well as generous access to sub-bottom profiler and static velocity CPT data granted by Gaz de France Suez E&P Nederland B.V. and provided by Fugro. We would like to thank the captain and crew of Fugro’s vessel Markab for their tireless support during the measurement campaign in February 2013, as well as D. Ruijtenbeek of Fugro and our engineer B. Heesemann for their help. The paper benefited from external assessments by J. Terwindt and E. Tervoort (both Fugro), journal reviews by N. Stark and V. Moon, and feedback from the editors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Stephan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stephan, S., Kaul, N. & Villinger, H. Validation of impact penetrometer data by cone penetration testing and shallow seismic data within the regional geology of the Southern North Sea. Geo-Mar Lett 35, 203–219 (2015). https://doi.org/10.1007/s00367-015-0401-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-015-0401-y

Keywords

Navigation