Skip to main content
Log in

Modeling dissolved organic carbon and carbon export in the equatorial Pacific Ocean

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

The newly built CoSiNE-31 ecosystem model developed for the Pacific Ocean is employed here to evaluate carbon cycling in the equatorial Pacific upwelling region. This model explicitly includes 31 state variables capable of reproducing key biogeochemical features in this region, such as high-nutrient low-chlorophyll conditions. In the so-called Wyrtki Box (5°S–5°N, 90–180°W), the modeled area-averaged carbon export data show the predominance of the particulate organic carbon flux. This is consistent with observations, and amounts to 7.88 mmol C m–2 day–1 at the bottom of the euphotic zone (120 m water depth). Nearly as important is the dissolved organic carbon export flux, at 6.62 mmol C m–2 day–1. The modeled particulate inorganic carbon (PIC) export flux of 2.07 mmol C m–2 day–1 is much higher than the global average, indicating a key role of PIC sedimentation in the study region. The modeled carbon-to-nitrogen export ratio for particulate organic matter (POM) is 7.8, which is consistent with the Redfield ratio. The export ratio increases to 13.8 for dissolved organic matter (DOM). By implication, carbon export is markedly more efficient via DOM than via POM. This is the case also under simulated iron enrichment conditions, although there are measurable increases in carbon export efficiency for both DOM and POM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderson TR, Pondaven P (2003) Non-Redfield carbon and nitrogen cycling in the Sargasso Sea: pelagic imbalances and export flux. Deep-Sea Res I 50:573–591

    Article  Google Scholar 

  • Anderson TR, Williams PJ, le B (1998) Modelling the seasonal cycle of dissolved organic carbon at station E1 in the English Channel. Estuar Coast Shelf Sci 46:93–109

    Article  Google Scholar 

  • Avril B (2002) DOC dynamics in the northwestern Mediterranean Sea (DYFAMED site). Deep-Sea Res II 49:2163–2182

    Article  Google Scholar 

  • Barber RT (1968) Dissolved organic matter from deep-sea waters resists microbial oxidation. Nature 220:274–275

    Article  Google Scholar 

  • Bidigare RR, Ondrusek ME (1996) Spatial and temporal variability of phytoplankton pigment distributions in the central equatorial Pacific Ocean. Deep-Sea Res II 43:809–833

    Article  Google Scholar 

  • Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO, Coale KH, Cullen JJ, de Baar HJW, Follows M, Harvey M, Lancelot C, Levasseur M, Owens NPJ, Pollard R, Rivkin RB, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson AJ (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Nature 315:612–617

    Google Scholar 

  • Buesseler KO, Andrews JA, Hartman MC, Belastock R, Chai F (1995) Regional estimates of the export flux of particulate organic carbon derived from thorium-234 during the JGOFS EqPac program. Deep-Sea Res II 42:777–804

    Article  Google Scholar 

  • Carlson CA, Ducklow HW (1995) Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: daily and finescale vertical variations. Deep-Sea Res II 42:639–656

    Article  Google Scholar 

  • Carlson CA, Ducklow HW, Michaels AF (1994) Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea. Nature 371:405–408

    Article  Google Scholar 

  • Carlson CA, Giovannoni SJ, Hansell DA, Goldberg SJ, Parsons R, Otero MP, Vergin K, Wheeler BR (2002) Effect of nutrient amendments on bacterioplankton production, community structure and DOC utilization in the northwestern Sargasso Sea. Aquat Microb Ecol 30:19–36

    Article  Google Scholar 

  • Chai F, Lindley ST, Barber RT (1996) Origin and maintenance of a high NO3 condition in the equatorial Pacific. Deep-Sea Res II 43:1031–1064

    Article  Google Scholar 

  • Chai F, Dugdale RC, Peng T-H, Wilkerson FP, Barber RT (2002) One dimensional ecosystem model of the Equatorial Pacific upwelling system, Part I: Model development and silicon and nitrogen cycle. Deep-Sea Res II 49:2713–2745

    Article  Google Scholar 

  • Chai F, Jiang MS, Chao Y, Dugdale RC, Chavez F, Barber RT (2007) Modeling responses of diatom productivity and biogenic silica export to iron enrichment in the equatorial Pacific Ocean. Global Biogeochem Cycles 21, GB3S90. doi:10.1029/2006GB002804

  • Chavez FP, Barber RT (1987) An estimate of new production in the equatorial Pacific. Deep-Sea Res 34:1229–1243

    Article  Google Scholar 

  • Chavez FP, Buck KR, Service SK, Newton J, Barber RT (1996) Phytoplankton variability in the central and eastern tropical Pacific. Deep-Sea Res II 43:835–870

    Article  Google Scholar 

  • Coale KH, Fitzwater SE, Gordon RM, Johnson KS, Barber RT (1996) Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean. Nature 379:621–624

    Article  Google Scholar 

  • Copin-Montégut G, Avril B (1993) Vertical distribution and temporal variation of dissolved organic carbon in the North-Western Mediterranean Sea. Deep-Sea Res 40:1963–1972

    Article  Google Scholar 

  • Daly KL, Wallace DWR, Smith WO Jr, Skoog A, Lara R, Gosselin M, Falck E, Yager PL (1999) Non-Redfield carbon and nitrogen cycling in the Arctic: effects of ecosystem structure and dynamics. J Geophys Res 104(C2):3185–3199

    Article  Google Scholar 

  • Dugdale RC, Barber RT, Chai F, Peng TH, Wilkerson FP (2002) One dimensional ecosystem model of the Equatorial Pacific upwelling system, Part II: Sensitivity analysis and comparison with JGOFS EqPac data. Deep-Sea Res II 49:2746–2762

    Google Scholar 

  • Dugdale RC, Wilkerson FP, Chai F, Feely R (2006) Size fractioned nitrogen uptake measurements in the equatorial Pacific and confirmation of the low Si-high nutrient-low chlorophyll condition. Glob Biogeochem Cycles 21, GB2005. doi:10.1029/2006GB002722

    Google Scholar 

  • Dunne JP, Murray JW, Aufdenkampe AK, Blain S, Rodier M (1999) Silicon–nitrogen coupling in the equatorial Pacific upwelling zone. Glob Biogeochem Cycles 13(3):715–726

    Article  Google Scholar 

  • Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282:677–680

    Article  Google Scholar 

  • Feely RA, Wanninkhof R, Cosca DE, Murphy PP, Lamb MF, Steckley MD (1995) CO2 distributions in the equatorial Pacific during the 1991-1992 event. Deep-Sea Res II 42:365–386

    Article  Google Scholar 

  • Fujii M, Chai F (2007) Modeling carbon and silicon cycling in the equatorial Pacific. Deep-Sea Res II 54:496–520

    Article  Google Scholar 

  • Fujii M, Ikeda M, Yamanaka Y (2005) Roles of biogeochemical processes in the carbon cycle described with a simple coupled physical–biogeochemical model. J Oceanogr 61:803–815

    Article  Google Scholar 

  • Fujii M, Boss E, Chai F (2007) The value of adding optics to ecosystem models: a case study. Biogeosciences 4:817–835

    Article  Google Scholar 

  • Hansell DA (2013) Recalcitrant dissolved organic carbon fractions. Annu Rev Mar Sci 5:421–445

    Article  Google Scholar 

  • Hansell DA, Carlson CA (1998) Deep ocean gradients in dissolved organic carbon concentrations. Nature 395:263–266

    Article  Google Scholar 

  • Hansell DA, Carlson CA (2013) Localized refractory dissolved organic carbon sinks in the deep ocean. Glob Biogeochem Cycles 27:705–710

    Article  Google Scholar 

  • Hansell DA, Waterhouse TY (1997) Controls on the distribution of organic carbon and nitrogen in the eastern Pacific Ocean. Deep-Sea Res I 44:843–857

    Article  Google Scholar 

  • Hansell DA, Bates NR, Carlson CA (1997a) Predominantly vertical losses of carbon from the surface layer of the Equatorial Pacific Ocean. Nature 386:59–61

    Article  Google Scholar 

  • Hansell DA, Carlson CA, Bates N, Poisson A (1997b) Horizontal and vertical removal of organic carbon in the equatorial Pacific Ocean: a mass balance assessment. Deep-Sea Res II 44:2115–2130

    Article  Google Scholar 

  • Hansell DA, Carlson CA, Schlitzer R (2012) Net removal of major marine dissolved organic carbon fractions in the subsurface ocean. Glob Biogeochem Cycles 26, GB1016. doi:10.1029/2011GB004069

    Article  Google Scholar 

  • Hebel DV, Karl DM (2001) Seasonal, interannual and decadal variations in particulate matter concentrations and composition in the subtropical North Pacific Ocean. Deep-Sea Res II 48:1669–1695

    Article  Google Scholar 

  • Heinze C, Maier-Reimer E, Winn K (1991) Glacial pCO2 reduction by the world ocean: experiments with the Hamburg carbon cycle model. Paleoceanography 6:395–430

    Article  Google Scholar 

  • Hopkinson CS Jr, Vallino JJ (2005) Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433:142–145

    Article  Google Scholar 

  • Karl DM, Tilbrook BA, Tien G (1991) Seasonal coupling of organic matter production and particle flux in the western Bransfield Strait, Antarctica. Deep-Sea Res 38:1097–1126

    Article  Google Scholar 

  • Kepkay PE, Jellett JE, Niven SEH (1997) Respiration and the carbon-nitrogen ratio of a phytoplankton bloom. Mar Ecol Prog Ser 150:249–261

    Article  Google Scholar 

  • Körtzinger A, Koeve W, Kähler P, Mintrop L (2001) C:N ratios in the mixed layer during the productive season in the northeast Atlantic Ocean. Deep-Sea Res I 48:661–688

    Article  Google Scholar 

  • Ku TL, Luo S, Kusakabe M, Bishop JKB (1995) 228Ra-derived nutrient budgets in the upper equatorial Pacific and the role of ‘new’ silicate in limiting productivity. Deep-Sea Res II 42:479–497

    Article  Google Scholar 

  • Landry MR, Barber RT, Bidigare RR, Chai F, Coale KH, Dam HG, Lewis MR, Lindley ST, McCarthy JJ, Roman MR, Stoecker DK, Verity PG, White JR (1997) Iron and grazing constraints on primary production in the central equatorial Pacific: an EQPAC synthesis. Limnol Oceanogr 42(3):405–418

    Article  Google Scholar 

  • Le Borgne R, Brunet C, Eldin G, Radenac M-H, Rodier M, Blain S, Blanchot J, Bonnet S, Gérard P, Le Bouteiller A, Le Vaillant T, Penhoat Y, Poisson A, Schauer B (1995) Campagne océanographique FLUPAC à bord du N.O. l’ATALANTE. Du 23 septembre au 29 octobre 1994. Recueil des données, Tome 1. ORSTOM, Nouméa, Archives Sciences de la Mer, Océanographique, No. 1

  • Le Borgne R, Langlade MJ, Polidori P, Rodier M (1998) Campagne océanographique EBENE à bord du N.O. l’ATALANTE. Du 21 octobre au 20 novembre 1996. Recueil des données, Tome 1. ORSTOM, Nouméa, Archives Sciences de la Mer, Océanographique, No. 3

  • Leynaert A, Tréguer P, Lancelot C, Rodier M (2001) Silicon limitation of biogenic silica production in the Equatorial Pacific. Deep-Sea Res I 48:639–660

    Article  Google Scholar 

  • Loh AN, Bauer JE (2000) Distribution, partitioning and fluxes of dissolved and particulate organic C, N, and P in the eastern North Pacific and Southern Oceans. Deep-Sea Res I 47:2287–2316

    Article  Google Scholar 

  • Loukos H, Frost B, Harrison DE, Murray JW (1997) An ecosystem model with iron limitation of primary production in the equatorial Pacific at 1401W. Deep-Sea Res II 44:2221–2249

    Article  Google Scholar 

  • Ma W, Tian J (2014) Modeling the contribution of dissolved organic carbon to carbon sequestration during the last glacial maximum. Geo-Mar Lett 34:471–482. doi:10.1007/s00367-014-0378-y

    Article  Google Scholar 

  • Ma W, Chai F, Xiu P, Xue H, Tian J (2014) Simulation of export production and biological pump structure in the South China Sea. Geo-Mar Lett 34:541–554. doi:10.1007/s00367-014-0384-0

    Article  Google Scholar 

  • Martin J (1990) Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13

    Article  Google Scholar 

  • Martin JH, Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner SJ, Hunter CN, Elrod VA, Nowicki JL, Coley TL, Barber RT, Lindley S, Watson AJ, Van Scoy K, Law CS, Liddicoat MI, Ling R, Stanton T, Stockel J, Collins C, Anderson A, Bidigare R, Ondrusek M, Latasa M, Millero FJ, Lee K, Yao W, Zhang JZ, Friederich G, Sakamoto C, Chavez F, Buck K, Kolber Z, Greene R, Falkowski P, Chisholm SW, Hoge F, Swift R, Yungel J, Turner S, Nightingale P, Hatton A, Liss P, Tindale NW (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371:123–129

    Article  Google Scholar 

  • Moore JK, Doney SC, Kleypas JA, Glover DM, Fung IY (2002) An intermediate complexity marine ecosystem model for the global domain. Deep-Sea Res II 49:403–462

    Article  Google Scholar 

  • Murray JW, Barber RT, Roman MR, Bacon MP, Feely RA (1994) Physical and biological controls on carbon cycling in the equatorial Pacific. Science 266:58–65

    Article  Google Scholar 

  • Murray JW, Young J, Newton J, Dunne J, Chapin T, Paul B, McCarthy JJ (1996) Export flux of particulate organic carbon from the central equatorial pacific determined using a combined drifting trap–234Th approach. Deep-Sea Res II 43:1095–1133

    Article  Google Scholar 

  • Murray JW, Leborgne R, Dandonneau Y (1997) JGOFS studies in the equatorial Pacific. Deep-Sea Res II 44:1759–1763

    Article  Google Scholar 

  • Nodder SD, Northcote LC (2001) Episodic particulate fluxes at southern temperate mid-latitudes (42–45°S) in the Subtropical Front region, east of New Zealand. Deep-Sea Res I 48:833–864

    Article  Google Scholar 

  • Ogawa H, Fukuda R, Koike I (1999) Vertical distribution of dissolved organic carbon and nitrogen in the Southern Ocean. Deep-Sea Res I 46:1809–1826

    Article  Google Scholar 

  • Peltzer ET, Hayward NA (1996) Spatial and temporal variability of total organic carbon along 140°W in the equatorial Pacific Ocean in 1992. Deep-Sea Res II 43:1155–1180

    Article  Google Scholar 

  • Quay P (1997) Was a carbon balance measured in the equatorial Pacific during JGOFS? Deep-Sea Res II 44:1765–1781

    Article  Google Scholar 

  • Rodier M, Le Borgne R (1997) Export flux of particles at the equator in the western and central Pacific ocean. Deep-Sea Res II 44:2085–2113

    Article  Google Scholar 

  • Sarmiento JL, Dunne J, Gnanadesikan A, Key RM, Matsumoto K, Slater R (2002) A new estimate of the CaCO3 to organic carbon export ratio. Glob Biogeochem Cycles 16(4):1107. doi:10.1029/2002GB001919

    Article  Google Scholar 

  • Steinberg DK, Carlson CA, Bates NR, Goldthwait SA, Madin LP, Michaels AF (2001) Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep-Sea Res I 47:137–158

    Article  Google Scholar 

  • Thomas H, Ittekkot V, Osterroht C, Schneider B (1999) Preferential recycling of nutrients—the ocean’s way to increase new production and to pass nutrient limitation? Limnol Oceanogr 44:1999–2004

    Article  Google Scholar 

  • Tian RC, Deibel D, Rivkin RB, Vézina AF (2004) Biogenic carbon and nitrogen export in a deep-convection region: simulations in the Labrador Sea. Deep-Sea Res I 51:413–437

    Article  Google Scholar 

  • Toggweiler JR, Carson S (1995) What are upwelling systems contributing to the ocean’s carbon and nutrient budgets? In: Summerhayes CP, Emeis KC, Angel MV, Smith RL, Zeitzschel B (eds) Upwelling in the ocean: modern processes and ancient records. Wiley, New York, pp 337–360

    Google Scholar 

  • Walsh JJ, Dieterle DA, Müller-Karger FE, Bohrer R, Bissett WP, Varela RJ, Aparicio R, Díaz R, Thunell R, Taylor GT, Scranton MI, Fanning KA, Peltzer ET (1999) Simulation of carbon-nitrogen cycling during spring upwelling in the Cariaco Basin. J Geophys Res 104(C4):7807–7825

    Article  Google Scholar 

  • Williams PJ, le B (1995) Evidence for the seasonal accumulation of carbon-rich dissolved organic material, its scale in comparison with changes in particulate material and the consequential effect on net C/N assimilation ratios. Mar Chem 51:17–29

    Article  Google Scholar 

  • Williams PM, Druffel ERM (1987) Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature 330:246–248

    Article  Google Scholar 

  • Williams PM, Carlucci AF, Olson R (1980) A deep profile of some biologically important properties in the central North Pacific gyre. Oceanol Acta 3:471–476

    Google Scholar 

  • Wyrtki K (1981) An estimate of equatorial upwelling in the Pacific. J Phys Oceanogr 11:1205–1214

    Article  Google Scholar 

  • Xiu P, Chai F (2014) Connections between physical, optical and biogeochemical processes in the Pacific Ocean. Prog Oceanogr 122:30–53

    Article  Google Scholar 

  • Zhang J, Quay PD (1997) The total organic carbon export rate based on DIC and DIC13 budgets in the equatorial Pacific Ocean. Deep-Sea Res II 44:2163–2190

    Article  Google Scholar 

  • Zhou K, Nodder SD, Dai M, Hall JA (2012) Insignificant enhancement of export flux in the highly productive subtropical front, east of New Zealand: a high resolution study of particle export fluxes based on 234Th:238U disequilibria. Biogeosciences 9:973–992

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the CAS/SAFEA International Partnership Program for Creative Research Teams, the 100-Talent Program of Chinese Academy of Sciences, and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11010203). Independent assessments by three anonymous reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Xiu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Zeng, L., Li, Y. et al. Modeling dissolved organic carbon and carbon export in the equatorial Pacific Ocean. Geo-Mar Lett 35, 119–133 (2015). https://doi.org/10.1007/s00367-014-0394-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-014-0394-y

Keywords

Navigation