Skip to main content
Log in

Immersed boundary-conformal isogeometric LaTIn method for multiple non-linear interfaces

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Computational micromechanics appears of the utmost importance, especially in the current context of digital twins in mechanics of materials. The objective here is to develop an efficient solver for the simulation of geometrically complex composite microstructures involving numerous inclusions connected with the matrix through various non-linear interface behaviors. To do so, we resort to IsoGeometric Analysis, which provides increased per-degree-of-freedom accuracy, and leverage the recently introduced immersed boundary-conformal method to retrieve conformal matrix/inclusion interfaces through the construction of conformal layers from it. Then, the approach is enhanced with the Large Time INcremental method that allows to separate the non-linear interface equations from those related to the subdomains, the latter being all linear and subdomain-wise independent. It results in an immersed hybrid mixed higher-order numerical scheme that is naturally parallelizable between the different subdomains and that is flexible to treat any non-linear interface behavior. The stabilization of the formulation occurs within the bulk equations where Nitsche couplings are performed. The accuracy and efficiency of the developed algorithm are demonstrated by solving a range of non-linear examples in 2D, including different numbers of inclusions in unilateral contact, frictional contact, and delamination with the matrix of the composite microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Legrain G, Cartraud P, Perreard I, Moës N (2011) An X-FEM and level set computational approach for image-based modelling: application to homogenization. Int J Numer Methods Eng 86(7):915–934

    Article  Google Scholar 

  2. Verhoosel C-V, van Zwieten G-J, van Rietbergen B, de Borst R (2015) Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone. Comput Methods Appl Mech Eng 284:138–164

    Article  ADS  MathSciNet  Google Scholar 

  3. Wang J, Zhou G, Hillman M, Madra A, Bazilevs Y, Du J, Su K (2021) Consistent immersed volumetric Nitsche methods for composite analysis. Comput Methods Appl Mech Eng 385:114042

    Article  ADS  MathSciNet  Google Scholar 

  4. Claus S, Kerfriden P, Moshfeghifar F, Darkner S, Erleben K, Wong C (2021) Contact modeling from images using cut finite element solvers. Adv Model Simul Eng Sci 8(1):1–23

    Article  Google Scholar 

  5. Heinze S, Bleistein T, Düster A, Diebels S, Jung A (2018) Experimental and numerical investigation of single pores for identification of effective metal foams properties. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 98(5):682–695

    Article  ADS  MathSciNet  Google Scholar 

  6. Wu D, Joffre T, Mägi CÖ, Ferguson SJ, Persson C, Isaksson P (2022) A combined experimental and numerical method to estimate the elastic modulus of single trabeculae. J Mech Behav Biomed Mater 125:104879

    Article  PubMed  Google Scholar 

  7. Buljac A, Jailin C, Mendoza A, Neggers J, Taillandier-Thomas T, Bouterf A, Smaniotto B, Hild F, Roux S (2018) Digital volume correlation: review of progress and challenges. Exp Mech 58:661–708

    Article  Google Scholar 

  8. Rouwane A, Doumalin P, Bouclier R, Passieux J-C, Périé J-N (2023) Architecture-driven digital volume correlation: application to the analysis of in-situ crushing of a polyurethane foam. Exp Mech 63:897–913

  9. Fernández M, Jamshidian M, Böhlke T, Kersting K, Weeger O (2021) Anisotropic hyperelastic constitutive models for finite deformations combining material theory and data-driven approaches with application to cubic lattice metamaterials. Comput Mech 67:653–677

    Article  MathSciNet  Google Scholar 

  10. Masi F, Stefanou I (2022) Multiscale modeling of inelastic materials with Thermodynamics-based Artificial Neural Networks (TANN). Comput Methods Appl Mech Eng 398:115190

    Article  ADS  MathSciNet  Google Scholar 

  11. Herráez M, González C, Lopes C, De Villoria RG, LLorca J, Varela T, Sánchez J (2016) Computational micromechanics evaluation of the effect of fibre shape on the transverse strength of unidirectional composites: an approach to virtual materials design. Compos Part A: Appl Sci Manuf 91:484–492

    Article  Google Scholar 

  12. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  ADS  MathSciNet  Google Scholar 

  13. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Hoboken

    Book  Google Scholar 

  14. Cohen E, Lyche T, Riesenfeld R (1980) Discrete B-spline and subdivision techniques in computer aided geometric design and computer graphics. Comput Graph Image Process 14:87–111

    Article  Google Scholar 

  15. Piegl L, Tiller W (1997) The NURBS book, 2nd edn. Springer, New York

    Book  Google Scholar 

  16. Bouclier R, Hirschler T (2022) IGA: non-conforming coupling and shape optimization of complex multipatch structures. Wiley, Hoboken

    Book  Google Scholar 

  17. Evans JA, Bazilevs Y, Babuška I, Hughes TJ (2009) n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method. Comput Methods Appl Mech Eng 198(21–26):1726–1741

    Article  ADS  MathSciNet  Google Scholar 

  18. Dokken T, Lyche T, Pettersen K (2013) Polynomial splines over locally refined box-partitions. Comput Aided Geom Des 30:331–356

    Article  MathSciNet  Google Scholar 

  19. Hennig P, Müller S, Kästner M (2016) Bézier extraction and adaptive refinement of truncated hierarchical NURBS. Comput Methods Appl Mech Eng 305:316–339

    Article  ADS  Google Scholar 

  20. D’Angella D, Reali A (2020) Efficient extraction of hierarchical b-splines for local refinement and coarsening of isogeometric analysis. Comput Methods Appl Mech Eng 367:113131

    Article  ADS  MathSciNet  Google Scholar 

  21. Veiga L, Buffa A, Cho D, Sangalli G (2012) Analysis-suitable T-splines are dual-compatible. Comput Methods Appl Mech Eng 249:42–51

    Article  ADS  MathSciNet  Google Scholar 

  22. Evans E, Scott M, Li X, Thomas D (2015) Hierarchical T-splines: analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis. Comput Methods Appl Mech Eng 284:1–20

    Article  ADS  Google Scholar 

  23. Ruess M, Schillinger D, Özcan A-I, Rank E (2014) Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries. Comput Methods Appl Mech Eng 169:46–71

    Article  ADS  MathSciNet  Google Scholar 

  24. Bouclier R, Passieux J-C, Salaün M (2016) Local enrichment of NURBS patches using a non-intrusive coupling strategy: geometric details, local refinement, inclusion, fracture. Comput Methods Appl Mech Eng 300:1–26

    Article  ADS  MathSciNet  Google Scholar 

  25. Wei X, Marussig B, Antolin P, Buffa A (2021) Immersed boundary-conformal isogeometric method for linear elliptic problems. Comput Mech 68(6):1385–1405

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  26. Lapina E, Oumaziz P, Bouclier R, Passieux J-C (2023) A fully non-invasive hybrid IGA/FEM scheme for the analysis of localized non-linear phenomena. Comput Mech 71(2):213–235

    Article  MathSciNet  Google Scholar 

  27. Massarwi F, Antolin P, Elber G (2019) Volumetric untrimming: precise decomposition of trimmed trivariates into tensor products. Comput Aided Geom Des 71:1–15

    Article  MathSciNet  Google Scholar 

  28. Rank E, Ruess M, Kollmannsberger S, Schillinger D, Düster A (2012) Geometric modeling, isogeometric analysis and the finite cell method. Comput Methods Appl Mech Eng 249:104–115

    Article  ADS  Google Scholar 

  29. Schillinger D, Ruess M (2015) The finite cell method: a review in the context of higher-order structural analysis of CAD and image-based geometric models. Arch Comput Methods Eng 22(3):391–455

    Article  MathSciNet  Google Scholar 

  30. Divi SC, Verhoosel CV, Auricchio F, Reali A, van Brummelen EH (2022) Topology-preserving scan-based immersed isogeometric analysis. Comput Methods Appl Mech Eng 392:114648

    Article  ADS  MathSciNet  Google Scholar 

  31. Rouwane A, Bouclier R, Passieux J-C, Périé J-N (2021) Adjusting fictitious domain parameters for fairly priced image-based modeling: application to the regularization of Digital Image Correlation. Comput Methods Appl Mech Eng 373:113507

    Article  ADS  MathSciNet  Google Scholar 

  32. Hoang T, Verhoosel CV, Qin C-Z, Auricchio F, Reali A, van Brummelen EH (2019) Skeleton-stabilized immersogeometric analysis for incompressible viscous flow problems. Comput Methods Appl Mech Eng 344:421–450

    Article  ADS  MathSciNet  Google Scholar 

  33. Casquero H, Bona-Casas C, Toshniwal D, Hughes TJ, Gomez H, Zhang YJ (2021) The divergence-conforming immersed boundary method: application to vesicle and capsule dynamics. J Comput Phys 425:109872

    Article  MathSciNet  Google Scholar 

  34. Patton A, Carraturo M, Auricchio F, Reali A (2022) Cost-effective and accurate interlaminar stress modeling of composite Kirchhoff plates via immersed isogeometric analysis and equilibrium. J Mech 38:32–43

    Article  CAS  Google Scholar 

  35. Nagy A-P, Benson D-J (2015) On the numerical integration of trimmed isogeometric elements. Comput Methods Appl Mech Eng 284:165–185

    Article  ADS  MathSciNet  Google Scholar 

  36. Kudela L, Zander N, Bog T, Kollmannsberger S, Rank E (2015) Efficient and accurate numerical quadrature for immersed boundary method. Adv Model Simul Eng Sci 2:110

    Article  Google Scholar 

  37. Antolin P, Buffa A, Martinelli M (2019) Isogeometric analysis on V-reps: first results. Comput Methods Appl Mech Eng 355:976–1002

    Article  ADS  MathSciNet  Google Scholar 

  38. Legrain G (2021) Non-negative moment fitting quadrature rules for fictitious domain methods. Comput Math Appl 99:270–291

    Article  MathSciNet  Google Scholar 

  39. Garhuom W, Düster A (2022) Non-negative moment fitting quadrature for cut finite elements and cells undergoing large deformations. Comput Mech 70(5):1059–1081

    Article  MathSciNet  Google Scholar 

  40. Bouclier R, Passieux J-C (2018) A Nitsche-based non-intrusive coupling strategy for global/local isogeometric structural analysis. Comput Methods Appl Mech Eng 340:253–277

    Article  ADS  MathSciNet  Google Scholar 

  41. Antolin P, Buffa A, Puppi R, Wei X (2021) Overlapping multipatch isogeometric method with minimal stabilization. SIAM J Sci Comput 43(1):330–354

    Article  MathSciNet  Google Scholar 

  42. Calabro F, Sangalli G, Tani M (2017) Fast formation of isogeometric Galerkin matrices by weighted quadrature. Comput Methods Appl Mech Eng 316:606–622

    Article  ADS  MathSciNet  Google Scholar 

  43. Mantzaflaris A, Jüttler B, Khoromskij BN, Langer U (2017) Low rank tensor methods in Galerkin-based isogeometric analysis. Comput Methods Appl Mech Eng 316:1062–1085

    Article  ADS  MathSciNet  Google Scholar 

  44. Hirschler T, Antolin P, Buffa A (2022) Fast and multiscale formation of isogeometric matrices of microstructured geometric models. Comput Mech 69:439–466

  45. Hofreither C, Takacs S (2017) Robust multigrid for isogeometric analysis based on stable splittings of spline spaces. SIAM J Numer Anal 55(4):2004–2024

    Article  MathSciNet  Google Scholar 

  46. Hirschler T, Bouclier R, Dureisseix D, Duval A, Elguedj T, Morlier J (2019) A dual domain decomposition algorithm for the analysis of non-conforming isogeometric Kirchhoff–Love shells. Comput Methods Appl Mech Eng 357:112578

    Article  ADS  MathSciNet  Google Scholar 

  47. Bosy M, Montardini M, Sangalli G, Tani M (2020) A domain decomposition method for isogeometric multi-patch problems with inexact local solvers. Comput Math Appl 80(11):2604–2621

    Article  MathSciNet  Google Scholar 

  48. Widlund OB, Scacchi S, Pavarino LF (2022) BDDC deluxe algorithms for two-dimensional H (curl) isogeometric analysis. SIAM J Sci Comput 44(4):2349–2369

    Article  MathSciNet  Google Scholar 

  49. Ladevèze P (1999) Nonlinear computational structural mechanics: new approaches and non-incremental methods of calculation. Springer, New York

    Book  Google Scholar 

  50. Blanzé C, Champaney L, Vedrine P (2000) Contact problems in the design of a superconducting quadrupole prototype. Eng Comput 17(2):136–153

    Article  Google Scholar 

  51. Boucard P-A, Champaney L (2003) A suitable computational strategy for the parametric analysis of problems with multiple contact. Int J Numer Methods Eng 57(9):1259–1281

    Article  Google Scholar 

  52. Oumaziz P, Gosselet P, Boucard P-A, Guinard S (2017) A non-invasive implementation of a mixed domain decomposition method for frictional contact problems. Comput Mech 60:797–812

    Article  MathSciNet  Google Scholar 

  53. Oumaziz P, Gosselet P, Boucard P-A, Abbas M (2018) A parallel noninvasive multiscale strategy for a mixed domain decomposition method with frictional contact. Int J Numer Methods Eng 115(8):893–912

    Article  MathSciNet  Google Scholar 

  54. Kerfriden P, Allix O, Gosselet P (2009) A three-scale domain decomposition method for the 3D analysis of debonding in laminates. Comput Mech 44(3):343–362

    Article  Google Scholar 

  55. Violeau D, Ladevèze P, Lubineau G (2009) Micromodel-based simulations for laminated composites. Compos Sci Technol 69(9):1364–1371

    Article  CAS  Google Scholar 

  56. Fernandez J, Saavedra K, Hinojosa J, Flores P (2019) The effect of the mesh refinement on a multiscale domain decomposition method for the non-linear simulation of composite structures. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 35(1)

  57. Claus S, Kerfriden P (2018) A stable and optimally convergent LaTIn-CutFEM algorithm for multiple unilateral contact problems. Int J Numer Methods Eng 113(6):938–966

    Article  MathSciNet  Google Scholar 

  58. Burman E, Claus S, Hansbo P, Larson MG, Massing A (2015) CutFEM: discretizing geometry and partial differential equations. Int J Numer Methods Eng 104(7):472–501

    Article  MathSciNet  Google Scholar 

  59. Lee B-G, Park Y (2002) Degree elevation of NURBS curves by weighted blossom. Korean J Comput Appl Math 9(1):151–165

    Article  MathSciNet  Google Scholar 

  60. Cottrell J-A, Hughes T-J-R, Reali A (2007) Studies of refinement and continuity in isogeometric structural analysis. Comput Methods Appl Mech Eng 196:4160–4183

    Article  ADS  Google Scholar 

  61. Marussig B, Hughes T-J-R (2018) A review of trimming in isogeometric analysis: challenges, data exchange and simulation aspects. Arch Comput Methods Eng 25:1059–1127

    Article  MathSciNet  PubMed  Google Scholar 

  62. Guinard S, Bouclier R, Toniolli M, Passieux J-C (2018) Multiscale analysis of complex aeronautical structures using robust non-intrusive coupling. Adv Model Simul Eng Sci 5(1):1–27

    Article  Google Scholar 

  63. Hansbo P (2005) Nitsche’s method for interface problems in computational mechanics. GAMM-Mitteilungen 28(2):183–206

    Article  MathSciNet  Google Scholar 

  64. Bouclier R, Passieux J-C, Salaün M (2017) Development of a new, more regular, mortar method for the coupling of NURBS subdomains within a NURBS patch: application to a non-intrusive local enrichment of NURBS patches. Comput Methods Appl Mech Eng 316:123–150

    Article  ADS  MathSciNet  Google Scholar 

  65. Roulet V, Champaney L, Boucard P-A (2011) A parallel strategy for the multiparametric analysis of structures with large contact and friction surfaces. Adv Eng Softw 42(6):347–358

    Article  Google Scholar 

  66. Giacoma A, Dureisseix D, Gravouil A, Rochette M (2015) Toward an optimal a priori reduced basis strategy for frictional contact problems with LATIN solver. Comput Methods Appl Mech Eng 283:1357–1381

    Article  ADS  MathSciNet  Google Scholar 

  67. Alfano G, Crisfield M (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 50(7):1701–1736

    Article  Google Scholar 

  68. Kikuchi N, Oden JT (1988) Contact Problems in Elasticity: a Study of Variational Inequalities and Finite Element Methods. SIAM Studies in Applied Mathematics. SIAM, Philadelphia

    Book  Google Scholar 

  69. Antolin P, Buffa A, Cirillo E (2023) Region extraction in mesh intersection. Comput Aided Des 156:103448

    Article  MathSciNet  Google Scholar 

  70. Kerfriden P, Claus S, Mihai I (2020) A mixed-dimensional CutFEM methodology for the simulation of fibre-reinforced composites. Adv Model Simul Eng Sci 7:1–26

    Article  Google Scholar 

  71. Passieux J-C, Bouclier R, Weeger O (2023) Image-based isogeometric twins of lattices with virtual image correlation for varying cross-section beams. Int J Numer Methods Eng 124(10):2237–2260

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bouclier.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapina, E., Oumaziz, P. & Bouclier, R. Immersed boundary-conformal isogeometric LaTIn method for multiple non-linear interfaces. Engineering with Computers (2024). https://doi.org/10.1007/s00366-024-01946-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00366-024-01946-8

Keywords

Navigation