Skip to main content
Log in

Peridynamics for out-of-plane damage analysis of composite laminates

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A new peridynamic model for predicting the out-of-plane bending and twisting behavior of composite laminates has been proposed, in which fiber bonds and matrix bonds are distinguished for characterizing anisotropy. The peridynamic formulations are obtained based on the principle of virtual displacements using the Total Lagrange formulation, and the equation of motion is reformulated by the interpolation technique. The critical curvature is adopted as the failure criterion, and a micromodulus reduction method is implemented in the PD algorithm. For multi-layer laminated structures, a new single-layer material point model (SLMPM) is proposed, in which the overall micromodulus is integrated according to all plies in laminates. The capability of the developed PD model was demonstrated by the bending examples of composite laminates with different fiber orientations, and damage analysis was further conducted to demonstrate the strong capability of the proposed PD model in replicating the failure process of composite structures. In addition, the computational efficiency of numerical models can be greatly improved due to the SLMPM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

The data are available upon reasonable request.

References

  1. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209

    Article  MathSciNet  MATH  Google Scholar 

  2. Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:73–168

    Article  Google Scholar 

  3. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 3:1526–1535

    Article  Google Scholar 

  4. Madenci E, Oterkus E (2014) Peridynamic theory and its applications. Springer, New York

    Book  MATH  Google Scholar 

  5. Bobaru F, Foster JT, Geubelle PH, Silling SA (2016) Handbook of peridynamic modeling. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  6. Gao C, Zhou Z, Li Z, Li L, Cheng S (2020) Peridynamics simulation of surrounding rock damage characteristics during tunnel excavation. Tunn Undergr Space Technol 97:103289

    Article  Google Scholar 

  7. Qin M, Yang D, Chen W, Yang S (2021) Hydraulic fracturing model of a layered rock mass based on peridynamics. Eng Fract Mech 258:108088

    Article  Google Scholar 

  8. Zhou Z, Li Z, Gao C, Zhang D, Bai S (2021) Peridynamic micro-elastoplastic constitutive model and its application in the failure analysis of rock masses. Comput Geotech 132(1):104037

    Article  Google Scholar 

  9. Yaghoobi A, Chorzepa MG (2017) Fracture analysis of fiber reinforced concrete structures in the micropolar peridynamic analysis framework. Eng Fract Mech 169:238–250

    Article  Google Scholar 

  10. Jin Y, Li L, Jia Y, Shao J, Burlion N (2021) Numerical study of shrinkage and heating induced cracking in concrete materials and influence of inclusion stiffness with Peridynamics method. Comput Geotech 133:103998

    Article  Google Scholar 

  11. Xu C, Yuan Y, Zhang Y, Xue Y (2021) Peridynamic modeling of prefabricated beams post-cast with steelfiber reinforced high-strength concrete. Struct Concr 22:445–456

  12. Zhang H, Qiao P (2018) An extended state-based peridynamic model for damage growth prediction of bimaterial structures under thermomechanical loading. Eng Fract Mech 189:81–97

    Article  Google Scholar 

  13. Zhang H, Zhang X, Liu Y, Qiao P (2022) Peridynamic modeling of elastic bimaterial interface fracture. Comput Methods Appl Mech Eng 390:114458

    Article  MathSciNet  MATH  Google Scholar 

  14. Alebrahim R (2019) Peridynamic modeling of lamb wave propagation in bimaterial plates. Compos Struct 214:12–22

    Article  Google Scholar 

  15. Bathe K-J, Bolourchi S (1980) A geometric and material nonlinear plate and shell element. Comput Struct 11(1–2):23–48

    Article  MATH  Google Scholar 

  16. Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  17. Hughes TJ, Pister KS, Taylor RL (1979) Implicit-explicit finite elements in nonlinear transient analysis. Comput Methods Appl Mech Eng 17:159–182

    Article  MATH  Google Scholar 

  18. Silling SA, Bobaru F (2005) Peridynamic modeling of membranes and fibers. Int J Non Linear Mech 40(2–3):395–409

    Article  MATH  Google Scholar 

  19. O’Grady J, Foster J (2014) Peridynamic plates and flat shells: a non-ordinary, state-based model. Int J Solids Struct 51(25–26):4572–4579

    Article  Google Scholar 

  20. Diyaroglu C, Oterkus E, Oterkus S, Madenci E (2015) Peridynamics for bending of beams and plates with transverse shear deformation. Int J Solids Struct 69–70:152–168

    Article  Google Scholar 

  21. Nguyen CT, Oterkus S (2019) Peridynamics for the thermomechanical behavior of shell structures. Eng Fract Mech 219:106623

    Article  Google Scholar 

  22. Nguyen CT, Oterkus S (2020) Ordinary state-based peridynamic model for geometrically nonlinear analysis. Eng Fract Mech 224:106750

    Article  Google Scholar 

  23. Nguyen CT, Oterkus S (2021) Ordinary state-based peridynamics for geometrically nonlinear analysis of plates. Theor Appl Fract Mec 112:102877

    Article  Google Scholar 

  24. Shen G, Xia Y, Hu P, Zheng G (2021) Construction of peridynamic beam and shell models on the basis of the micro-beam bond obtained via interpolation method. Eur J Mech-A/Solids 86:104174

    Article  MathSciNet  MATH  Google Scholar 

  25. Oterkus E, Madenci E (2012) Peridynamic analysis of fiber-reinforced composite materials. J Mech Mater Struct 7(1):45–84

    Article  Google Scholar 

  26. Hu W, Ha YD, Bobaru F (2012) Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Comput Methods Appl Mech Eng 217–220:247–261

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun C, Huang Z (2016) Peridynamic simulation to impacting damage in composite laminate. Compos Struct 138:335–341

    Article  Google Scholar 

  28. Hu YL, Yu Y, Wang H (2014) Peridynamic analytical method for progressive damage in notched composite laminates. Compos Struct 108:801–810

    Article  Google Scholar 

  29. Hu YL, Carvalho N, Madenci E (2015) Peridynamic modeling of delamination growth in composite laminates. Compos Struct 132:610–620

    Article  Google Scholar 

  30. Diyaroglu C, Madenci E, Phan N (2019) Peridynamic homogenization of microstructures with orthotropic constituents in a finite element framework. Compos Struct 227:111334

    Article  Google Scholar 

  31. Diyaroglu C, Oterkus E et al (2016) Peridynamic modeling of composite laminates under explosive loading. Compos Struct 144:14–23

    Article  Google Scholar 

  32. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88:151–184

    Article  MathSciNet  MATH  Google Scholar 

  33. Silling SA (2017) Stability of peridynamic correspondence material models and their particle discretizations. Comput Methods Appl Mech Eng 322:42–57

    Article  MathSciNet  MATH  Google Scholar 

  34. Gao Y, Oterkus S (2019) Fully coupled thermomechanical analysis of laminated composites by using ordinary state based peridynamic theory. Compos Struct 207:397–424

    Article  Google Scholar 

  35. Gao Y, Oterkus S (2021) Coupled thermo-fluid-mechanical peridynamic model for analysing composite under fire scenarios. Compos Struct 255:113006

    Article  Google Scholar 

  36. Hattori G, Trevelyan J, Coombs WM (2018) A non-ordinary state-based peridynamics framework for anisotropic materials. Comput Methods Appl Mech Eng 339:416–442

    Article  MathSciNet  MATH  Google Scholar 

  37. Fang G, Liu S et al (2021) A stable non‐ordinary state‐based peridynamic model for laminated composite materials. Int J Numer Methods Eng 122:403–430

  38. Shang S, Qin XD, Li H et al (2019) An application of non-ordinary state-based peridynamics theory in cutting process modelling of unidirectional carbon fiber reinforced polymer material. Compos Struct 226:111194

    Article  Google Scholar 

  39. Hu YL, Madenci E (2016) Bond-based peridynamic modeling of composite laminates with arbitrary fiber orientation and stacking sequence. Compos Struct 153:139–175

    Article  Google Scholar 

  40. Hu YL, Yu Y, Madenci E (2020) Peridynamic modeling of composite laminates with material coupling and transverse shear deformation. Compos Struct 253:112760

    Article  Google Scholar 

  41. Hu YL, Madenci E (2017) Peridynamics for fatigue life and residual strength prediction of composite laminates. Compos Struct 160:169–184

    Article  Google Scholar 

  42. Jiang XW, Wang H (2018) Ordinary state-based peridynamics for open-hole tensile strength prediction of fiber-reinforced composite laminates. J Mech Mater Struct 13(1):53–82

    Article  MathSciNet  Google Scholar 

  43. Jiang XW, Wang H, Guo S (2019) Peridynamic open-hole tensile strength prediction of fiber-reinforced composite laminate using energy-based failure criteria. Adv Mater Sci Eng 2019:7694081

  44. Guo J, Gao W et al (2019) Study of dynamic brittle fracture of composite lamina using a bond-based peridynamic lattice model. Adv Mater Sci Eng 2019:3748795

  45. Braun M, Ariza MP (2019) New lattice models for dynamic fracture problems of anisotropic materials. Compos Part B-Eng 172:760–768

    Article  Google Scholar 

  46. Braun M, Iváñez I, Ariza MP (2021) A numerical study of progressive damage in unidirectional composite materials using a 2D lattice model. Eng Fract Mech 249:107767

    Article  Google Scholar 

  47. Braun M, Ariza MP (2020) A progressive damage based lattice model for dynamic fracture of composite materials. Compos Sci Technol 200:108335

    Article  Google Scholar 

  48. Braun M, Aranda-Ruiz J, Fernández-Sáez J (2021) Mixed mode crack propagation in polymers using a discrete lattice method. Polymers 13(8):1290

    Article  Google Scholar 

  49. Hu YL, Wang JY, Madenci E et al (2022) Peridynamic micromechanical model for damage mechanisms in composites. Compos Struct 301:116182

    Article  Google Scholar 

  50. Buryachenko VA (2020) Generalized effective fields method in peridynamic micromechanics of random structure composites. Int J Solids Struct 202:765–786

    Article  Google Scholar 

  51. Tastan A, Yolum U et al (2016) A 2D peridynamic model for failure analysis of orthotropic thin plates due to bending. Procedia Struct Integr 2:261–268

    Article  Google Scholar 

  52. Ugur Y et al (2020) On the peridynamic formulation for an orthotropic Mindlin plate under bending. Math Mech Solids 25(2):263–287

    Article  MathSciNet  MATH  Google Scholar 

  53. Underwood PG (1983) Dynamic relaxation a review. In: Computational Methods for Transient Dynamic Analysis, vol 1. American Society of Mechanical Engineers, pp 245–265

  54. Kilic B, Madenci E (2010) An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory. Theor Appl Fract Mech 53(3):194–204

    Article  Google Scholar 

  55. Qian Y (2018) Study on damage of laminates due to impact bending. Master’s thesis, Southeast University

  56. Zaccariotto M, Mudric T, Tomasi D et al (2018) Coupling of FEM meshes with Peridynamic grids. Comput Methods Appl Mech Eng 330:471–497

    Article  MathSciNet  MATH  Google Scholar 

  57. Budzik MK, Jumel J, Shanahan MER (2012) On the crack front curvature in bonded joints. Theor Appl Fract Mech 59(1):8–20

    Article  Google Scholar 

  58. Jiang Z, Wan S, Zhong Z et al (2015) Effect of curved delamination front on mode-I fracture toughness of adhesively bonded joints. Eng Fract Mech 138:73–91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weicheng Gao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: PD material parameters

The geometric relationship between material points x(k) and x(j) can be obtained by Taylor expansion as:

$$\phi_{x(j)} = \phi_{x(k)} + \phi_{x,x(k)} \left( {x_{(j)} - x_{(k)} } \right) + \phi_{x,y(k)} \left( {y_{(j)} - y_{(k)} } \right)$$
(77a)
$$\phi_{y(j)} = \phi_{y(k)} + \phi_{y,x(k)} \left( {x_{(j)} - x_{(k)} } \right) + \phi_{y,y(k)} \left( {y_{(j)} - y_{(k)} } \right)$$
(77b)

where the higher-order terms of Taylor expansion are ignored, and the expressions in Eq. (77) can be further written as:

$$\frac{{\phi_{x(j)} - \phi_{x(k)} }}{{\xi_{(j)(k)} }} = \phi_{x,x(k)} \cos \gamma + \phi_{x,y(k)} \sin \gamma$$
(78a)
$$\frac{{\phi_{y(j)} - \phi_{y(k)} }}{{\xi_{(j)(k)} }} = \phi_{y,x(k)} \cos \gamma + \phi_{y,y(k)} \sin \gamma .$$
(78b)

1.1 Lamina subjected to simple twisting

For a lamina subjected to simple twisting, \(\kappa_{12} = \kappa\), as shown in Fig. 25. The constitutive relation can be expressed as:

$$\left\{ {\begin{array}{*{20}c} {m_{11} } \\ {m_{22} } \\ {m_{12} } \\ \end{array} } \right\} = \left[ {\begin{array}{*{20}c} {D_{11} } & {D_{12} } & 0 \\ {D_{12} } & {D_{22} } & 0 \\ 0 & 0 & {D_{66} } \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} 0 \\ 0 \\ \kappa \\ \end{array} } \right\}\quad {\text{or}}\quad \left\{ {\begin{array}{*{20}c} {m_{11} } \\ {m_{22} } \\ {m_{12} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} 0 \\ 0 \\ {D_{66} \kappa } \\ \end{array} } \right\} .$$
(79)
Fig. 25
figure 25

Lamina subjected simple twisting

The strain energy density based on CCM at material point x(k) can be defined as:

$$W_{(k)} = \frac{1}{2}D_{66} \kappa^{2} .$$
(80)

The relative curvature between material points x(j) and x(k) in the deformed state can be expressed as:

$$\kappa_{(k)(j)} = \sin \gamma_{(j)(k)} \cos \gamma_{(j)(k)} \kappa .$$
(81)

The strain energy density can be calculated as:

$$W_{(k)} = c_{{{\text{ft}}}} \int_{H} {\delta \left( {\sin \gamma \cos \gamma \kappa } \right)^{2} \xi } {\text{d}}H$$
(82a)

or

$$W_{(k)} = c_{{{\text{ft}}}} h\int_{0}^{\delta } {\int_{0}^{2\pi } {\delta \left( {\sin \gamma \cos \gamma \kappa } \right)^{2} \xi^{2} {\text{d}}\xi {\text{d}}\phi } = \frac{{\pi h\delta^{4} \kappa^{2} c_{{{\text{ft}}}} }}{12}} .$$
(82b)

The PD strain energy density at material point x(k) must be equal to the counterpart from CCM, Eqs. (80) and (82b), as follows

$$c_{{{\text{ft}}}} = \frac{{6D_{66} }}{{\pi h\delta^{4} }}.$$
(83)

1.2 Lamina subjected to uniaxial bending

For a lamina subjected to uniaxial bending in the fiber direction, \(\kappa_{11} = \kappa ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \kappa_{22} = 0\), as shown in Fig. 26. The constitutive relation can be expressed as:

$$\left\{ {\begin{array}{*{20}c} {m_{11} } \\ {m_{22} } \\ {m_{12} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} {D_{11} \kappa } \\ {D_{12} \kappa } \\ 0 \\ \end{array} } \right\}$$
(84)

where D11 and D12 represent the bending stiffness coefficients of orthotropic materials which can be expressed as:

$$\left[ {\mathbf{D}} \right] = \left[ {\begin{array}{*{20}c} {D_{11} } & {D_{12} } & 0 \\ {D_{12} } & {D_{22} } & 0 \\ 0 & 0 & {D_{66} } \\ \end{array} } \right]$$
(85)

where

$$D_{ij} = \frac{1}{12}q_{ij} t^{3} \quad \left( {i,j = 1,2,6} \right).$$
(86)
Fig. 26
figure 26

Lamina subjected uniaxial bending in the fiber direction

The dilatation and strain energy density based on CCM at material point x(k) can be defined as:

$$\theta_{(k)} = \kappa \quad W_{(k)} = \frac{1}{2}D_{11} \kappa^{2} .$$
(87a, b)

The relative curvature between material points x(j) and x(k) in the deformed state can be expressed as:

$$\kappa_{(k)(j)} = \left( {\cos^{2} \gamma_{(j)(k)} } \right)\kappa .$$
(88)

Due to uniaxial bending deformation, the dilatation can be calculated as

$$\theta_{(k)} = d\int_{H} {\delta \left( {\cos^{2} \gamma } \right)} \kappa {\text{d}}H$$
(89a)

or

$$\theta_{(k)} = \frac{{\pi dh\delta^{3} \kappa }}{2}.$$
(89b)

The dilatation at material point x(k) must be equal to the counterpart from CCM, Eqs. (87a) and (89b), as follows:

$$d = \frac{2}{{\pi h\delta^{3} }}.$$
(90)

The strain energy density of the lamina subjected to uniaxial bending can be calculated as:

$$W_{(k)} = a\kappa^{2} + c_{{\text{f}}} \sum_{j = 1}^{J} {\delta \left( {\cos^{2} \gamma_{(k)(j)} \kappa } \right)^{2} \xi_{(k)(j)} V_{(j)} } + c_{{{\text{ft}}}} \int_{H} {\delta \left( {\cos^{2} \gamma \kappa } \right)^{2} \xi_{(k)(j)} {\text{d}}H}$$
(91a)

or

$$W_{(k)} = a\kappa^{2} + c_{{\text{f}}} \delta \kappa^{2} \sum_{j = 1}^{J} {\xi_{(k)(j)} V_{(j)} } + \frac{{\pi h\delta^{4} \kappa^{2} }}{4}c_{{{\text{ft}}}} .$$
(91b)

Substituting Eq. (83) into Eq. (91b) and the integral value can be obtained as:

$$W_{(k)} = a\kappa^{2} + c_{{\text{f}}} \delta \kappa^{2} \sum_{j = 1}^{J} {\xi_{(k)(j)} V_{(j)} } + \frac{{3D_{66} \kappa^{2} }}{2}.$$
(92)

The strain energy density at material point x(k) must be equal to the counterpart from CCM, Eqs. (87b) and (92), as follows:

$$a + \delta \sum_{j = 1}^{J} {\xi_{(k)(j)} V_{(j)} } c_{{\text{f}}} = \frac{1}{2}\left( {D_{11} - 3D_{66} } \right).$$
(93)

Similarly, for a lamina subjected to uniaxial bending in the transverse direction, \(\kappa_{11} = 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \kappa_{22} = \kappa\), as shown in Fig. 27. The expression can also be obtained as:

$$a + \delta \sum_{j = 1}^{J} {\xi_{(k)(j)} V_{(j)} c_{t} } = \frac{1}{2}\left( {D_{22} - 3D_{66} } \right).$$
(94)
Fig. 27
figure 27

Lamina subjected uniaxial bending in the transverse direction

1.3 Lamina subjected to biaxial bending

For a lamina subjected to biaxial bending, \(\kappa_{11} = \kappa ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \kappa_{22} = \kappa\), as shown in Fig. 28. The constitutive relation can be expressed as:

$$\left\{ {\begin{array}{*{20}c} {m_{11} } \\ {m_{22} } \\ {m_{12} } \\ \end{array} } \right\} = \left[ {\begin{array}{*{20}c} {D_{11} } & {D_{12} } & 0 \\ {D_{12} } & {D_{22} } & 0 \\ 0 & 0 & {D_{66} } \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} \kappa \\ \kappa \\ 0 \\ \end{array} } \right\}\quad {\text{or}}\quad \left\{ {\begin{array}{*{20}c} {m_{11} } \\ {m_{22} } \\ {m_{12} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} {\left( {D_{11} + D_{12} } \right)\kappa } \\ {\left( {D_{12} + D_{22} } \right)\kappa } \\ 0 \\ \end{array} } \right\}.$$
(95a, b)
Fig. 28
figure 28

Lamina subjected biaxial bending

The strain energy density based on CCM at material point x(k) can be defined as:

$$W_{(k)} = \frac{1}{2}\left( {D_{11} + 2D_{12} + D_{22} } \right)\kappa^{2} .$$
(96)

The relative curvature between material points x(j) and x(k) in the deformed state can be expressed as:

$$\kappa_{(k)(j)} = \left( {\cos^{2} \gamma_{(j)(k)} + \sin^{2} \gamma_{(j)(k)} } \right)\kappa .$$
(97)

The strain energy density of the lamina subjected to biaxial bending can be calculated as

$$W_{(k)} = 4a\kappa^{2} + c_{{\text{f}}} \kappa^{2} \delta \sum_{j = 1}^{J} {\xi_{(k)(j)} V_{(j)} } + c_{{{\text{ft}}}} \frac{{2\pi h\delta^{4} \kappa^{2} }}{3} + c_{{\text{t}}} \kappa^{2} \delta \sum_{j = 1}^{J} {\xi_{(k)(j)} V_{(j)} } .$$
(98)

Substituting Eq. (83) into Eq. (98) and the integral value can be obtained as:

$$W_{(k)} = 4a\kappa^{2} + c_{{\text{f}}} \kappa^{2} \delta \sum_{j = 1}^{J} {\xi_{(k)(j)} V_{(j)} } + 4D_{66} \kappa^{2} + c_{{\text{t}}} \kappa^{2} \delta \sum_{j = 1}^{J} {\xi_{(k)(j)} V_{(j)} } .$$
(99)

The strain energy density at material point x(k) must be equal to the counterpart from CCM, Eqs. (96) and (99), as follows:

$$\frac{1}{2}\left( {D_{11} + 2D_{12} + D_{22} - 8D_{66} } \right) = 4a + c_{{\text{f}}} \delta \sum_{j = 1}^{J} {\xi_{(k)(j)} V_{(j)} } + c_{t} \delta \sum_{j = 1}^{J} {\xi_{(k)(j)} V_{(j)} } .$$
(100)

The PD material parameters of the lamina can be obtained by solving Eqs. (9394) and (100), as:

$$a = \frac{1}{2}\left( {D_{12} - D_{66} } \right)\quad c_{f} = \frac{{\left( {D_{11} - D_{12} - 2D_{66} } \right)}}{{2\delta \sum_{j = 1}^{J} {\xi_{(k)(j)} V_{(j)} } }}\quad c_{t} = \frac{{\left( {D_{22} - D_{12} - 2D_{66} } \right)}}{{2\delta \sum_{j = 1}^{J} {\xi_{(k)(j)} V_{(j)} } }}.$$
(101)

In bond-based peridynamics (BBPD), the material parameter a associated with dilatation needs to vanish. Therefore, these elastic constants of lamina are limited as:

$$D_{12} = D_{66} \quad {\text{and}}\quad D_{22} = 3D_{12} .$$
(102)

The nonvanishing PD parameters, cf and cft, can be presented as:

$$c_{{\text{f}}} = \frac{{\left( {D_{11} - D_{22} } \right)}}{{2\delta \sum_{j = 1}^{J} {\xi_{(k)(j)} V_{(j)} } }}\quad {\text{and}}\quad c_{{{\text{ft}}}} = \frac{{6D_{66} }}{{\pi h\delta^{4} }}$$
(103)

where cf and cft represent the bending micromodulus of PD bonds in the fiber and arbitrary directions, respectively.

Appendix 2: Surface corrections

Similar to other PD models, the PD material parameters need to be corrected for those material points located in the boundary region. These correction factors can be determined by comparing the strain energy densities obtained from PD and CCM, and the corresponding moment–curvature relations can be modified.

When a lamina is subjected to constant curvature in the fiber and transverse direction, \({{\partial \theta_{\alpha } } \mathord{\left/ {\vphantom {{\partial \theta_{\alpha } } {\partial x_{\alpha } }}} \right. \kern-0pt} {\partial x_{\alpha } }} = \kappa\) with \(\left( {\alpha = 1,2} \right)\), the deformation field at material point x can be described as:

$${\mathbf{u}}_{1}^{{\text{T}}} \left( {\mathbf{x}} \right) = \left\{ {\frac{{\partial \theta_{1} }}{{\partial x_{1} }}x_{1} \quad 0} \right\}\quad {\text{and}}\quad {\mathbf{u}}_{2}^{{\text{T}}} \left( {\mathbf{x}} \right) = \left\{ {0\quad \frac{{\partial \theta_{2} }}{{\partial x_{2} }}x_{2} } \right\}.$$
(104)

The PD strain energy density associated with x(k) can be decomposed as:

$$W_{\alpha }^{{{\text{PD}}}} \left( {{\mathbf{x}}_{(k)} } \right) = W_{\alpha f}^{{{\text{PD}}}} \left( {{\mathbf{x}}_{(k)} } \right) + W_{{\alpha {\text{ft}}}}^{{{\text{PD}}}} \left( {{\mathbf{x}}_{(k)} } \right)$$
(105)

where \(W_{{\alpha {\text{f}}}}^{{{\text{PD}}}}\) and \(W_{{\alpha {\text{ft}}}}^{{{\text{PD}}}}\) represent strain energy densities of fiber bonds and matrix bonds, respectively. Each term in Eq. (105) can be calculated as:

$$W_{{\alpha {\text{f}}}}^{{{\text{PD}}}} \left( {{\mathbf{x}}_{(k)} } \right) = c_{f} \delta \sum_{j = 1}^{J} {\kappa_{(k)(j)}^{2} V_{(j)} }$$
(106a)
$$W_{{\alpha {\text{ft}}}}^{{{\text{PD}}}} \left( {{\mathbf{x}}_{(k)} } \right) = c_{{{\text{ft}}}} \delta \sum_{j = 1}^{\infty } {\kappa_{(k)(j)}^{2} V_{(j)} } .$$
(106b)

The corresponding strain energy density in CCM associated with material point x(k) can also be defined as:

$$W_{\alpha }^{{{\text{CM}}}} \left( {{\mathbf{x}}_{(k)} } \right) = \frac{1}{2}D_{\alpha \alpha } \kappa^{2} \quad \left( {\alpha = 1,2} \right)$$
(107)

which can be decomposed as:

$$W_{\alpha }^{{{\text{CM}}}} \left( {{\mathbf{x}}_{(k)} } \right) = W_{{\alpha {\text{f}}}}^{{{\text{CM}}}} \left( {{\mathbf{x}}_{(k)} } \right) + W_{{\alpha {\text{ft}}}}^{{{\text{CM}}}} \left( {{\mathbf{x}}_{(k)} } \right)$$
(108)

where \(W_{{\alpha {\text{f}}}}^{{{\text{CM}}}}\) and \(W_{{\alpha {\text{ft}}}}^{{{\text{CM}}}}\) represent strain energy densities in the fiber direction and arbitrary directions, respectively.

For a lamina subjected to uniaxial bending in the fiber direction, each component of strain energy density can be expressed as:

$$W_{{1{\text{f}}}}^{{{\text{CM}}}} \left( {{\mathbf{x}}_{(k)} } \right) = \frac{1}{2}\left( {D_{11} - D_{12} - 2D_{66} } \right)\kappa^{2}$$
(109a)
$$W_{{1{\text{ft}}}}^{{{\text{CM}}}} \left( {{\mathbf{x}}_{(k)} } \right) = \frac{3}{2}D_{66} \kappa^{2} .$$
(109b)

For a lamina subjected to uniaxial bending in the transverse direction, each component of strain energy density can be expressed as:

$$W_{{2{\text{f}}}}^{{{\text{CM}}}} \left( {{\mathbf{x}}_{(k)} } \right) = 0$$
(110a)
$$W_{{2{\text{ft}}}}^{{{\text{CM}}}} \left( {{\mathbf{x}}_{(k)} } \right) = \frac{3}{2}D_{66} \kappa^{2} .$$
(110b)

Hence, for the uniaxial bending in the fiber direction, the correction factor components at material point x(k) can be defined as:

$$S_{{1{\text{f}}(k)}} = \frac{{W_{{1{\text{f}}}}^{{{\text{CM}}}} \left( {{\mathbf{x}}_{(k)} } \right)}}{{W_{{1{\text{f}}}}^{{{\text{PD}}}} \left( {{\mathbf{x}}_{(k)} } \right)}} = \frac{{\frac{1}{2}\left( {D_{11} - D_{12} - 2D_{66} } \right)\kappa^{2} }}{{c_{{\text{f}}} \delta \sum_{j = 1}^{J} {\kappa_{(k)(j)}^{2} V_{(j)} } }}$$
(111a)
$$S_{{1{\text{ft}}(k)}} = \frac{{W_{{1{\text{ft}}}}^{{{\text{CM}}}} \left( {{\mathbf{x}}_{(k)} } \right)}}{{W_{{1{\text{ft}}}}^{{{\text{PD}}}} \left( {{\mathbf{x}}_{(k)} } \right)}} = \frac{{\frac{3}{2}D_{66} \kappa^{2} }}{{c_{{{\text{ft}}}} \delta \sum_{j = 1}^{\infty } {\kappa_{(k)(j)}^{2} V_{(j)} } }}.$$
(111b)

When a lamina is subjected to uniaxial bending in the transverse direction, the correction factor components at material point x(k) can be defined as:

$$S_{{2{\text{f}}(k)}} = 1$$
(112a)
$$S_{{2{\text{ft}}(k)}} = \frac{{W_{{2{\text{ft}}}}^{{{\text{CM}}}} \left( {{\mathbf{x}}_{(k)} } \right)}}{{W_{{2{\text{ft}}}}^{{{\text{PD}}}} \left( {{\mathbf{x}}_{(k)} } \right)}} = \frac{{\frac{3}{2}D_{66} \kappa^{2} }}{{c_{{{\text{ft}}}} \delta \sum_{j = 1}^{P} {\kappa_{(k)(j)}^{2} V_{(j)} } }}.$$
(112b)

These correction factors in Eqs. (111–112) can be written in a vector form as:

$$g_{l(k)} \left( {{\mathbf{x}}_{(k)} } \right) = \left\{ {g_{1l} \left( {{\mathbf{x}}_{(k)} } \right),g_{2l} \left( {{\mathbf{x}}_{(k)} } \right)} \right\}^{{\text{T}}} = \left\{ {S_{1l(k)} ,S_{2l(k)} } \right\}^{{\text{T}}} \quad \left( {l = {\text{f}},{\text{ft}}} \right).$$
(113)

Since these correction factors are only based on deformation in the fiber and transverse directions. To solve the correction factors in any direction, a unit relative position vector between material points x(k) and x(j) needs to be introduced, which can be expressed as:

$${\mathbf{n}} = \frac{{\left( {{\mathbf{x}}_{(j)} - {\mathbf{x}}_{(k)} } \right)}}{{\left| {{\mathbf{x}}_{(j)} - {\mathbf{x}}_{(k)} } \right|}} = \left\{ {n_{1} ,n_{2} } \right\}^{{\text{T}}} .$$
(114)

Therefore, the correction factor between material points x(k) and x(j) can be obtained as:

$$\overline{g}_{l(k)(j)} = \left\{ {\overline{g}_{l(k)(j)1} ,\overline{g}_{l(k)(j)2} } \right\}^{{\text{T}}} = \frac{{{\mathbf{g}}_{l(k)} + {\mathbf{g}}_{l(j)} }}{2}.$$
(115)

The total correction factor between material points x(k) and x(j) can be determined by projecting the correction factor components on the relative position vector as:

$$G_{l(k)(j)} = \left( {\left[ {{{n_{1} } \mathord{\left/ {\vphantom {{n_{1} } {\overline{g}_{l(k)(j)1} }}} \right. \kern-0pt} {\overline{g}_{l(k)(j)1} }}} \right]^{2} + \left[ {{{n_{2} } \mathord{\left/ {\vphantom {{n_{2} } {\overline{g}_{l(k)(j)2} }}} \right. \kern-0pt} {\overline{g}_{l(k)(j)2} }}} \right]^{2} } \right)^{ - 1/2} .$$
(116)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Gao, W., Liu, W. et al. Peridynamics for out-of-plane damage analysis of composite laminates. Engineering with Computers (2023). https://doi.org/10.1007/s00366-023-01903-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00366-023-01903-x

Keywords

Navigation