Skip to main content
Log in

Strong form meshfree collocation method for frictional contact between a rigid pile and an elastic foundation

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, a strong form meshfree collocation method is developed for two-dimensional single-body frictional contact problems. In this approach, a point-wise Taylor series approximation and generalized moving least squares approach is used to construct numerical differential operators at discrete points within the domain. The differential operators are then used to spatially discretize and solve the governing partial differential equations. Contact constraint conditions are formulated with the penalty approach. To demonstrate the efficiency of the method, benchmark problems in frictionless and frictional contact relevant to a rigid pile and an elastic foundation contact are provided. The numerical results are also compared with the finite element solutions to verify robustness and accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Hallquist J, Goudreau G, Benson D (1985) Sliding interfaces with contact-impact in large-scale Lagrangian computations. Comput Methods Appl Mech Eng 51(1–3):107–137

    MathSciNet  MATH  Google Scholar 

  2. Simo JC, Wriggers P, Taylor RL (1985) A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50(2):163–180

    MathSciNet  MATH  Google Scholar 

  3. Benson DJ, Hallquist JO (1990) A single surface contact algorithm for the post-buckling analysis of shell structures. Comput Methods Appl Mech Eng 78(2):141–163

    MathSciNet  MATH  Google Scholar 

  4. Papadopoulos P, Taylor RL (1992) A mixed formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 94(3):373–389

    MATH  Google Scholar 

  5. Wriggers P, Schröder J, Schwarz A (2013) A finite element method for contact using a third medium. Comput Mech 52(4):837–847

    MathSciNet  MATH  Google Scholar 

  6. Wohlmuth BI (2001) Iterative solvers based on domain decomposition. In: Discretization methods and iterative solvers based on domain decomposition. Lecture Notes in Computational Science and Engineering, vol. 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56767-4_2

  7. Belgacem FB, Maday Y (1994) A spectral element methodology tuned to parallel implementations. Comput Methods Appl Mech Eng 116(1–4):59–67

    MathSciNet  MATH  Google Scholar 

  8. Belhachmi Z, Bernardi C (1994) Resolution of fourth-order problems by the mortar element method. Comput Methods Appl Mech Eng 116(1–4):53–58

    MathSciNet  MATH  Google Scholar 

  9. Maday Y, Mavriplis C, Patera A (1988) Nonconforming mortar element methods: application to spectral discretizations (No. NASA-CR-181729).

  10. Bernardi C, Maday Y, Patera AT (1993) Domain Decomposition by the Mortar Element Method. In: Kaper, H.G., Garbey, M.,Pieper, G.W. (eds) Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters. NATO ASI Series, vol 384. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1810-1_17

  11. Belgacem FB, Hild P, Laborde P (1997) Approximation of the unilateral contact problem by the mortar finite element method. Comptes Rendus de l’Academie des Sciences Series I Mathematics 324(1):123–127

    MathSciNet  MATH  Google Scholar 

  12. Belgacem FB, Hild P, Laborde P (1998) The mortar finite element method for contact problems. Math Comput Model 28(4–8):263–271

    MathSciNet  MATH  Google Scholar 

  13. McDevitt T, Laursen T (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48(10):1525–1547

    MathSciNet  MATH  Google Scholar 

  14. Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193(6–8):601–629

    MATH  Google Scholar 

  15. Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62(9):1183–1225

    MathSciNet  MATH  Google Scholar 

  16. Kim TY, Dolbow J, Laursen T (2007) A mortared finite element method for frictional contact on arbitrary interfaces. Comput Mech 39(3):223–235

    MATH  Google Scholar 

  17. Yoon Y-C, Song J-H (2014) Extended particle difference method for weak and strong discontinuity problems: part i. Derivation of the extended particle derivative approximation for the representation of weak and strong discontinuities. Comput Mech 53(6):1087–1103

    MathSciNet  MATH  Google Scholar 

  18. Yoon Y-C, Song J-H (2014) Extended particle difference method for weak and strong discontinuity problems: part ii. formulations and applications for various interfacial singularity problems. Comput Mech 53(6):1105–1128

    MathSciNet  Google Scholar 

  19. Yoon Y-C, Song J-H (2014) Extended particle difference method for moving boundary problems. Comput Mech 54(3):723–743

    MathSciNet  MATH  Google Scholar 

  20. Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37(155):141–158

    MathSciNet  MATH  Google Scholar 

  21. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    MathSciNet  MATH  Google Scholar 

  22. Lu Y, Belytschko T, Gu L (1994) A new implementation of the element free Galerkin method. Comput Methods Appl Mech Eng 113(3–4):397–414

    MathSciNet  MATH  Google Scholar 

  23. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    MathSciNet  MATH  Google Scholar 

  24. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679

    MathSciNet  MATH  Google Scholar 

  25. Liu W, Li S, Belytschko T (1997) Moving least square kernel Galerkin method\(\pm\)part i: methodology and convergence. Comput Methods Appl Mech Eng 143:422–433

    Google Scholar 

  26. Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, part i-formulation and theory. Int J Numer Methods Eng 45(3):251–288

    MATH  Google Scholar 

  27. Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, part ii-applications. Int J Numer Methods Eng 45(3):289–317

    Google Scholar 

  28. Kim DW, Kim Y (2003) Point collocation methods using the fast moving least-square reproducing kernel approximation. Int J Numer Methods Eng 56(10):1445–1464

    MathSciNet  MATH  Google Scholar 

  29. Lee S-H, Kim K-H, Yoon Y-C (2016) Particle difference method for dynamic crack propagation. Int J Impact Eng 87:132–145

    Google Scholar 

  30. Fu Y, Michopoulos JG, Song J-H (2017) Bridging the multi phase-field and molecular dynamics models for the solidification of nano-crystals. J Comput Sci 20:187–197

    MathSciNet  Google Scholar 

  31. Song J-H, Fu Y, Kim T-Y, Yoon Y-C, Michopoulos JG, Rabczuk T (2018) Phase field simulations of coupled microstructure solidification problems via the strong form particle difference method. Int J Mech Mater Des 14, 491–509. https://doi.org/10.1007/s10999-017-9386-1

  32. Almasi A, Beel A, Kim T-Y, Michopoulos JG, Song J-H (2019) Strong-form collocation method for solidification and mechanical analysis of polycrystalline materials. J Eng Mech 145(10):04019082

    Google Scholar 

  33. Yoon Y-C, Schaefferkoetter P, Rabczuk T, Song J-H (2019) New strong formulation for material nonlinear problems based on the particle difference method. Eng Anal Bound Elem 98:310–327

    MathSciNet  MATH  Google Scholar 

  34. Beel A, Kim T-Y, Jiang W, Song J-H (2019) Strong form-based meshfree collocation method for wind-driven ocean circulation. Comput Methods Appl Mech Eng 351:404–421

    MathSciNet  MATH  Google Scholar 

  35. Chen J-S, Wang H-P (2000) New boundary condition treatments in meshfree computation of contact problems. Comput Methods Appl Mech Eng 187(3–4):441–468

    MathSciNet  MATH  Google Scholar 

  36. Li G, Belytschko T (2001) Element-free Galerkin method for contact problems in metal forming analysis. Eng Comput 18(1/2):62–78

    MATH  Google Scholar 

  37. Xiao J, Gama B, Gillespie J Jr, Kansa E (2005) Meshless solutions of 2d contact problems by subdomain variational inequality and mlpg method with radial basis functions. Eng Anal Bound Elem 29(2):95–106

    MATH  Google Scholar 

  38. De Lorenzis L, Evans J, Hughes TJ, Reali A (2015) Isogeometric collocation: Neumann boundary conditions and contact. Comput Methods Appl Mech Eng 284:21–54

    MathSciNet  MATH  Google Scholar 

  39. Kruse R, Nguyen-Thanh N, De Lorenzis L, Hughes TJ (2015) Isogeometric collocation for large deformation elasticity and frictional contact problems. Comput Methods Appl Mech Eng 296:73–112

    MathSciNet  MATH  Google Scholar 

  40. Weeger O, Yeung S-K, Dunn ML (2017) Isogeometric collocation methods for Cosserat rods and rod structures. Comput Methods Appl Mech Eng 316:100–122

    MathSciNet  MATH  Google Scholar 

  41. Temizer I, Wriggers P, Hughes TJR (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200(9–12):1100–1112

    MathSciNet  MATH  Google Scholar 

  42. Temizer I, Wriggers P, Hughes TJR (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209:115–128

    MathSciNet  MATH  Google Scholar 

  43. Hibbitt H, Karlsson B, Sorensen P (2012) Abaqus theory manual, version 6.12. Pawtucket, Rhode Island

    Google Scholar 

  44. Renaud C, Feng Z-Q (2003) Bem and fem analysis of Signorini contact problems with friction. Comput Mech 31(5):390–399

    MATH  Google Scholar 

  45. Kikuchi N, Oden JT (1988) Contact problems in elasticity: a study of variational inequalities and finite element methods, vol 8. SIAM, Philadelphia

    MATH  Google Scholar 

  46. Almasi A, Kim T-Y, Laursen TA, Song J-H (2019) A strong form meshfree collocation method for frictional contact on a rigid obstacle. Comput Methods Appl Mech Eng 357:112597

    MathSciNet  MATH  Google Scholar 

  47. Christensen P, Klarbring A, Pang J-S, Strömberg N (1998) Formulation and comparison of algorithms for frictional contact problems. Int J Numer Methods Eng 42(1):145–173

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Hoon Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Appendix

The global system of equation can be written

$$\begin{aligned} \begin{aligned} \left[ \begin{array}{lllll} \begin{array}{ll} K_{I1J1}^{\text {int}}& K_{I2J1}^{\text {int}}\\ K_{I1J2}^{\text {int}} & K_{I2J2}^{\text {int}} \end{array}& & 0 & \\ & \left[ \begin{array}{ll} K_{I1J1}^{D}& 0\\ 0& K_{I2J2}^{D} \end{array} \right]& & \\ & & \left[ \begin{array}{ll} K_{I1J1}^{N} & K_{I2J1}^{N} \\ K_{I1J2}^{N} & K_{I2J2}^{N} \end{array} \right] & \\ & 0& & \left[ \begin{array}{ll} K_{I1J1}^{c} & K_{I2J1}^{c} \\ K_{I1J2}^{c} & K_{I2J2}^{c} \end{array} \right] \end{array} \right] \left[ \begin{array}{l} u^{int}_{1I}(\mathbf{x}_I)\\ u^{int}_{2I}(\mathbf{x}_I)\\ u^{D}_{1I}(\mathbf{x}_I)\\ u^{D}_{2I}(\mathbf{x}_I)\\ u^{N}_{1I}(\mathbf{x}_I)\\ u^{N}_{2I}(\mathbf{x}_I)\\ u^{c}_{1I}(\mathbf{x}_I)\\ u^{c}_{2I}(\mathbf{x}_I) \end{array} \right]-\\ \left[ \begin{array}{l} -b_{1}(\mathbf{x}_I)\\ -b_{2}(\mathbf{x}_I)\\ u_{1I}(\mathbf{x}_I)\\ u_{2I}(\mathbf{x}_I)\\ t_{1}(\mathbf{x}_I)\\ t_{2}(\mathbf{x}_I)\\ t_{1c}(\mathbf{x}_I)\\ t_{2c}(\mathbf{x}_I) \end{array} \right]=0 \end{aligned} \end{aligned}$$
(53)

The components of \(K^{int}\) matrix are

$$\begin{aligned} \begin{aligned}&K_{I1J1}^{\text {int}} =[(\lambda +2\mu ) \varvec{\phi }_{IJ}^{(2,0)} + \mu \varvec{\phi }_{IJ}^{(0,2)}], \\&K_{I2J1}^{\text {int}} =(\lambda + \mu ) \varvec{\phi }_{IJ}^{(1,1)}, \\&K_{I1J2}^{\text {int}} =(\lambda + \mu ) \varvec{\phi }_{IJ}^{(1,1)},\\&K_{I2J2}^{\text {int}} =\mu \varvec{\phi }_{IJ}^{(2,0)} + (\lambda + 2\mu ) \varvec{\phi }_{IJ}^{(0,2)}. \end{aligned} \end{aligned}$$
(54)

The components of \(K^{D}\) matrix are

$$\begin{aligned} \begin{aligned} K_{I1J1}^{D} = \varvec{\phi }_{IJ}^{(0,0)}, \quad K_{I2J2}^{D} =\varvec{\phi }_{IJ}^{(0,0)}. \end{aligned} \end{aligned}$$
(55)

The components of \(K^{N}\) matrix are

$$\begin{aligned} \begin{aligned}&K_{I1J1}^{N} =(\lambda +2\mu ) \varvec{\phi }_{IJ}^{(1,0)} n_1 + \mu \varvec{\phi }_{IJ}^{(0,1)} n_2, \\&K_{I2J1}^{N} =\lambda \varvec{\phi }_{IJ}^{(0,1)} n_1 + \mu \varvec{\phi }_{IJ}^{(1,0)} n_2, \\&K_{I1J2}^{N} =\mu \varvec{\phi }_{IJ}^{(0,1)} n_1 + \lambda \varvec{\phi }_{IJ}^{(1,0)} n_2, \\&K_{I2J2}^{N} =(\lambda +2\mu ) \varvec{\phi }_{IJ}^{(0,1)} n_2+ \mu \varvec{\phi }_{IJ}^{(1,0)} n_1. \end{aligned} \end{aligned}$$
(56)

The components of \(K^{c}\) matrix for stick case are

$$\begin{aligned} \begin{aligned} K_{I1J1}^{c}&=K_{I1J1}^{N} +, K_{I1J1}^{stick}, \quad K_{I2J1}^{c} =K_{I2J1}^{N} +, K_{I2J1}^{stick}, \\ K_{I1J2}^{c}&=K_{I1J2}^{N} +, K_{I1J2}^{stick}, \quad K_{I2J2}^{c} =K_{I2J2}^{N} +, K_{I2J2}^{stick}, \end{aligned} \end{aligned}$$
(57)

where \(K_{I1J1}^{N}\), \(K_{I2J1}^{N}\), \(K_{I1J2}^{N}\), and \(K_{I2J2}^{N}\) can be obtained from Eq. (56). The component of stiffness matrix \(K^{stick}\) in Eq. (57) defined as

$$\begin{aligned} \begin{aligned} K_{I1J1}^{stick}&=\varvec{\phi }_{IJ}^{(0,0)} H(g(\mathbf{x}_J)) + [\epsilon _{\text {N}} \nu _1 \nu _1 + \epsilon _T \tau _1 \tau _1], \\ K_{I2J1}^{stick}&=\varvec{\phi }_{IJ}^{(0,0)} H(g(\mathbf{x}_J)) + [\epsilon _{\text {N}} \nu _2 \nu _1 + \epsilon _T \tau _2 \tau _1], \\ K_{I1J2}^{stick}&=\varvec{\phi }_{IJ}^{(0,0)} H(g(\mathbf{x}_J)) + [\epsilon _{\text {N}} \nu _1 \nu _2 + \epsilon _T \tau _1 \tau _2], \\ K_{I2J2}^{stick}&=\varvec{\phi }_{IJ}^{(0,0)} H(g(\mathbf{x}_J)) + [\epsilon _{\text {N}} \nu _2 \nu _2 + \epsilon _T \tau _2 \tau _2]. \end{aligned} \end{aligned}$$
(58)

The components of \(\mathbf{f}^c _{stick}\) vector are

$$\begin{aligned} \begin{aligned} t_{1} ^c (\mathbf{x}_J)&=\epsilon _{\text {N}}<g (\mathbf{x}_J)> \nu _1 - \epsilon _T H(g (\mathbf{x}_J)) (u_k \tau _k) \tau _1 \\ t_{2} ^c (\mathbf{x}_J)&=\epsilon _{\text {N}} <g (\mathbf{x}_J)> \nu _2 - \epsilon _T H(g (\mathbf{x}_J)) (u_k \tau _k) \tau _2 . \end{aligned} \end{aligned}$$

The components of \(K^{c}\) matrix for stick case are

$$\begin{aligned} \begin{aligned} K_{I1J1}^{c}&=K_{I1J1}^{N} +, K_{I1J1}^\mathrm{slip}, \quad K_{I2J1}^{c} =K_{I2J1}^{N} +, K_{I2J1}^\mathrm{slip}, \\ K_{I1J2}^{c}&=K_{I1J2}^{N} +, K_{I1J2}^\mathrm{slip}, \quad K_{I2J2}^{c} =K_{I2J2}^{N} +, K_{I2J2}^\mathrm{slip}. \end{aligned} \end{aligned}$$
(59)

The component of stiffness matrix \(K^\mathrm{slip}\) in Eq. (59) defined as

$$\begin{aligned} \begin{aligned} K_{I1J1}^\mathrm{slip}&=\varvec{\phi }_{IJ}^{(0,0)} H(g(\mathbf{x}_J)) + [ \epsilon _{\text {N}} \nu _1 \nu _1 - \mu \epsilon _{\text {N}} \text {sign} (u_k \tau _k) \nu _1 \tau _1], \\ K_{I2J1}^\mathrm{slip}&=\varvec{\phi }_{IJ}^{(0,0)} H(g(\mathbf{x}_J)) + [\epsilon _{\text {N}} \nu _2 \nu _1 - \mu \epsilon _{\text {N}} \text {sign} (u_k \tau _k) \nu _2 \tau _1], \\ K_{I1J2}^\mathrm{slip}&=\varvec{\phi }_{IJ}^{(0,0)} H(g(\mathbf{x}_J)) + [\epsilon _{\text {N}} \nu _1 \nu _2 -\mu \epsilon _{\text {N}} \text {sign} (u_k \tau _k) \nu _1 \tau _2], \\ K_{I2J2}^\mathrm{slip}&=\varvec{\phi }_{IJ}^{(0,0)} H(g(\mathbf{x}_J)) + [ \epsilon _{\text {N}} \nu _2 \nu _2 - \mu \epsilon _{\text {N}} \text {sign} (u_k \tau _k) \nu _2 \tau _2]. \end{aligned} \end{aligned}$$
(60)

The components of \(\mathbf{f}^c _\mathrm{slip}\) vector are

$$\begin{aligned} \begin{aligned} t_{1} ^c (\mathbf{x}_J)&=\epsilon _{\text {N}}<g (\mathbf{x}_J)> \nu _1 - \mu \epsilon _{\text {N}}<g (\mathbf{x}_J)> \text {sign} (u_k \tau _k) \tau _1 \\ t_{2} ^c (\mathbf{x}_J)&=\epsilon _{\text {N}}<g (\mathbf{x}_J)> \nu _2 - \mu \epsilon _{\text {N}} <g (\mathbf{x}_J)> \text {sign} (u_k \tau _k) \tau _2. \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almasi, A., Kim, TY. & Song, JH. Strong form meshfree collocation method for frictional contact between a rigid pile and an elastic foundation. Engineering with Computers 39, 791–807 (2023). https://doi.org/10.1007/s00366-022-01673-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01673-y

Keywords

Navigation