Skip to main content
Log in

Finite element formulation of metal foam microbeams via modified strain gradient theory

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Size-dependent behaviours of metal foam microbeams with three different porosity distribution models are studied in this paper. Based on the finite element model, a normal and shear deformation theory has been employed for the first time to investigate their structural behaviours by using modified strain gradient theory and considering the effects of variable material length scale parameter. The equations of motion and boundary conditions of system are derived from Hamilton’s principle. Finite element models are presented for the computation of deflections, vibration frequencies and buckling loads of the metal foam microbeams. The verification of proposed models is carried out with a comparison of the numerical results available in the literature. Calculations using the different parameters reveal the effects of the porosity parameters (distribution and coefficient), small size, boundary conditions and Poisson’s ratio on the displacements, frequencies and buckling loads of metal foam microbeams. Some benchmark results of these structures for both models (modified couple stress theory and modified strain gradient theory with constant and variable material length scale parameter) and with/without Poison’s effect are provided for future study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IGA:

Iso-geometric analysis

FSDT:

First order shear deformation theory

CST:

Classical shell theory

CCT:

Classical continuum theory

MCST:

Modified couple stress theory

MSGT:

Modified strain gradient theory

NSGT:

Nonlocal strain gradient theory

CNT:

Carbon nanotube

MLSP:

Material length scale parameter

NSDT:

Normal and shear deformation theory

FEM:

Finite element method

L, b, h :

Geometry of beam

UPD:

Uniform porosity distribution

NUPD1:

Non-uniform porosity distribution 1

NUPD2:

Non-uniform porosity distribution 2

\(E\) :

Young’s modulus

\(\rho \) :

Mass density

\( \ell \) :

MLSP

\({E}_{\text{max}}\) :

Maximum E

\({E}_{\text{min}}\) :

Minimum E

\({\rho }_{\text{max}}\) :

Maximum \(\rho \)

\({e}_{0}\) :

Porosity parameter

\({e}_{m}\) :

Porosity parameter

\({\ell}_{\text{max}}\) :

Maximum MLSP

\(\mathcal{U},V,K\) :

Strain energy, external work and kinetic energy

\({\sigma }_{ij},{m}_{ij}, {p}_{i},{\tau }_{ijk}\) :

Stress and modified strain gradient stress components

\({\varepsilon }_{ij},\) \({\chi }_{ij},\) \({\gamma }_{i}, {\eta }_{ijk}\) :

Strain and symmetric curvature, dilatation gradient and deviatoric stretch gradient tensors

\({u}_{1},{u}_{2},{u}_{3}\) :

Displacements in the 1, 2 and 3 directions of an arbitrary point

\({\delta }_{ij}\) :

Kronecker delta

\({e}_{ijk}\) :

Permutation symbol

\(\nu \) :

Poisson’s ratio

\(\mathcal{V}\) :

Volume of the body, which can be decomposed to the cross-sectional area \(A=bxh\) and the length of the domain L

\({ \ell }_{0}\),\({ \ell }_{1}\) and \({ \ell }_{2}\) :

MLSPs of modified stress tensors

\(u, {w}_{b}, {w}_{s}\) and \({w}_{z}\) :

In-plane displacement and bending, shear and thickness stretching displacements

\({f}_{1}\left(z\right), {f}_{2}\left(z\right)\) and \({f}_{3}\left(z\right)\) :

Shape function describing the contribution of the bending, shear and thickness stretching displacements across the thickness

TBT:

Third-order beam theory

\({Q}_{ij}\) :

Elastic constants

\(q\) :

Uniformly distributed load

\({N}_{0}\) :

Axial load

\({I}_{0},{I}_{1},{I}_{2},{J}_{1},{J}_{2},{J}_{3},{K}_{1},{K}_{2}\) :

Inertial constant coefficients

\(\omega \) :

Natural frequency

\({\varphi }_{j}\) :

FEM shape function

\(\Pi \) :

Total energy

\({[K}_{kl}]\), \({[M}_{kl}]\), \({[G}_{kl}]\) and \({F}_{k}\) :

FEM matrices

BC:

Boundary condition

DMD (\(\overline{w })\) :

Dimensionless mid-span deflection

DFF (\(\overline{\uplambda })\) :

Dimensionless fundamental frequency

DCBL (\({\overline{N} }_{cr})\) :

Dimensionless critical buckling load

SBT:

Sinusoidal beam theory

References

  1. Changdar A, Chakraborty S (2021) Laser processing of metal foam—a review. J Manuf Process 61:208–225. https://doi.org/10.1016/j.jmapro.2020.10.012

    Article  Google Scholar 

  2. Stasiewicz P, Magnucki K (2004) Elastic bending of an isotropic porous beam. Int J Appl Mech Eng 9:351–360

    MATH  Google Scholar 

  3. Stasiewicz P, Magnucki K (2004) Elastic buckling of a porous beam. J Theor Appl Mech 42:859–868

    MATH  Google Scholar 

  4. Magnucka-Blandzi E, Magnucki K (2007) Effective design of a sandwich beam with a metal foam core. Thin Walled Struct 45:432–438. https://doi.org/10.1016/j.tws.2007.03.005

    Article  Google Scholar 

  5. Chen D, Yang J, Kitipornchai S (2015) Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos Struct 133:54–61. https://doi.org/10.1016/j.compstruct.2015.07.052

    Article  Google Scholar 

  6. Chen D, Yang J, Kitipornchai S (2016) Free and forced vibrations of shear deformable functionally graded porous beams. Int J Mech Sci 108–109:14–22. https://doi.org/10.1016/j.ijmecsci.2016.01.025

    Article  Google Scholar 

  7. Chen D, Kitipornchai S, Yang J (2016) Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin Walled Struct 107:39–48. https://doi.org/10.1016/j.tws.2016.05.025

    Article  Google Scholar 

  8. Kitipornchai S, Chen D, Yang J (2017) Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater Des 116:656–665. https://doi.org/10.1016/j.matdes.2016.12.061

    Article  Google Scholar 

  9. Gao K, Huang Q, Kitipornchai S, Yang J (2019) Nonlinear dynamic buckling of functionally graded porous beams. Mech Adv Mater Struct 28:418–429. https://doi.org/10.1080/15376494.2019.1567888

    Article  Google Scholar 

  10. Lei Y, Gao K, Wang X, Yang J (2020) Dynamic behaviors of single- and multi-span functionally graded porous beams with flexible boundary constraints. Appl Math Model 83:754–776. https://doi.org/10.1016/j.apm.2020.03.017

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao K, Li R, Yang J (2019) Dynamic characteristics of functionally graded porous beams with interval material properties. Eng Struct 197:109441. https://doi.org/10.1016/j.engstruct.2019.109441

    Article  Google Scholar 

  12. Qin B, Zhong R, Wang Q, Zhao X (2020) A Jacobi–Ritz approach for FGP beams with arbitrary boundary conditions based on a higher-order shear deformation theory. Compos Struct 247:112435. https://doi.org/10.1016/j.compstruct.2020.112435

    Article  Google Scholar 

  13. Fang W, Yu T, Van Lich L, Bui T (2019) Analysis of thick porous beams by a quasi-3D theory and isogeometric analysis. Compos Struct 221:110890. https://doi.org/10.1016/j.compstruct.2019.04.062

    Article  Google Scholar 

  14. Wang Y, Zhao H (2019) Bending, buckling and vibration of shear deformable beams made of three-dimensional graphene foam material. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-019-1926-1

    Article  Google Scholar 

  15. Hamed M, Abo-bakr R, Mohamed S, Eltaher M (2020) Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core. Eng Comput 36:1929–1946. https://doi.org/10.1007/s00366-020-01023-w

    Article  Google Scholar 

  16. Magnucki K, Malinowski M, Kasprzak J (2006) Bending and buckling of a rectangular porous plate. Steel Compos Struct 6:319–333. https://doi.org/10.12989/scs.2006.6.4.319

    Article  Google Scholar 

  17. Magnucka-Blandzi E (2011) Mathematical modelling of a rectangular sandwich plate with a metal foam core. J Theor Appl Mech 49:439–455

    Google Scholar 

  18. Ghorbanpour Arani A, Khani M, Khoddami Maraghi Z (2017) Dynamic analysis of a rectangular porous plate resting on an elastic foundation using high-order shear deformation theory. J Vib Control 24:3698–3713. https://doi.org/10.1177/1077546317709388

    Article  MathSciNet  MATH  Google Scholar 

  19. Gao K, Gao W, Chen D, Yang J (2018) Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation. Compos Struct 204:831–846. https://doi.org/10.1016/j.compstruct.2018.08.013

    Article  Google Scholar 

  20. Gao Z, Li H, Zhao J, Guan J, Wang Q (2021) Analyses of dynamic characteristics of functionally graded porous (FGP) sandwich plates with viscoelastic materials-filled square-celled core. Eng Struct 248:113242. https://doi.org/10.1016/j.engstruct.2021.113242

    Article  Google Scholar 

  21. Ebrahimi F, Dabbagh A, Taheri M (2020) Vibration analysis of porous metal foam plates rested on viscoelastic substrate. Eng Comput 37:3727–3739. https://doi.org/10.1007/s00366-020-01031-w

    Article  Google Scholar 

  22. Chan D, Van Thanh N, Khoa N, Duc N (2020) Nonlinear dynamic analysis of piezoelectric functionally graded porous truncated conical panel in thermal environments. Thin Walled Struct 154:106837. https://doi.org/10.1016/j.tws.2020.106837

    Article  Google Scholar 

  23. Wang E, Li Q, Sun G (2020) Computational analysis and optimization of sandwich panels with homogeneous and graded foam cores for blast resistance. Thin Walled Struct 147:106494. https://doi.org/10.1016/j.tws.2019.106494

    Article  Google Scholar 

  24. Gao K, Gao W, Wu B, Wu D, Song C (2018) Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales. Thin Walled Struct 125:281–293. https://doi.org/10.1016/j.tws.2017.12.039

    Article  Google Scholar 

  25. Li H, Pang F, Ren Y, Miao X, Ye K (2019) Free vibration characteristics of functionally graded porous spherical shell with general boundary conditions by using first-order shear deformation theory. Thin Walled Struct 144:106331. https://doi.org/10.1016/j.tws.2019.106331

    Article  Google Scholar 

  26. Zhao J, Xie F, Wang A, Shuai C, Tang J, Wang Q (2019) A unified solution for the vibration analysis of functionally graded porous (FGP) shallow shells with general boundary conditions. Compos B Eng 156:406–424. https://doi.org/10.1016/j.compositesb.2018.08.115

    Article  Google Scholar 

  27. Li H, Pang F, Chen H, Du Y (2019) Vibration analysis of functionally graded porous cylindrical shell with arbitrary boundary restraints by using a semi analytical method. Compos B Eng 164:249–264. https://doi.org/10.1016/j.compositesb.2018.11.046

    Article  Google Scholar 

  28. Guan X, Sok K, Wang A, Shuai C, Tang J, Wang Q (2019) A general vibration analysis of functionally graded porous structure elements of revolution with general elastic restraints. Compos Struct 209:277–299. https://doi.org/10.1016/j.compstruct.2018.10.103

    Article  Google Scholar 

  29. Foroutan K, Shaterzadeh A, Ahmadi H (2020) Nonlinear static and dynamic hygrothermal buckling analysis of imperfect functionally graded porous cylindrical shells. Appl Math Model 77:539–553. https://doi.org/10.1016/j.apm.2019.07.062

    Article  MathSciNet  MATH  Google Scholar 

  30. Sajad Mirjavadi S, Forsat M, Barati M, Abdella G, Mohasel Afshari B, Hamouda A, Rabby S (2019) Dynamic response of metal foam FG porous cylindrical micro-shells due to moving loads with strain gradient size-dependency. Eur Phys J Plus. https://doi.org/10.1140/epjp/i2019-12540-3

    Article  Google Scholar 

  31. Toan Thang P, Nguyen-Thoi T, Lee J (2018) Mechanical stability of metal foam cylindrical shells with various porosity distributions. Mech Adv Mater Struct 27:295–303. https://doi.org/10.1080/15376494.2018.1472338

    Article  Google Scholar 

  32. Ebrahimi F, Seyfi A (2020) Studying propagation of wave in metal foam cylindrical shells with graded porosities resting on variable elastic substrate. Eng Comput. https://doi.org/10.1007/s00366-020-01069-w

    Article  MATH  Google Scholar 

  33. Rostami R, Mohammadimehr M (2020) Vibration control of rotating sandwich cylindrical shell-reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto-electro-elastic layers. Eng Comput. https://doi.org/10.1007/s00366-020-01052-5

    Article  Google Scholar 

  34. Ebrahimi F, Habibi M, Safarpour H (2018) On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell. Eng Comput 35:1375–1389. https://doi.org/10.1007/s00366-018-0669-4

    Article  Google Scholar 

  35. Wu H, Yang J, Kitipornchai S (2020) Mechanical analysis of functionally graded porous structures: a review. Int J Struct Stab Dyn 20:2041015. https://doi.org/10.1142/s0219455420410151

    Article  MathSciNet  Google Scholar 

  36. Yang F, Chong A, Lam D, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743. https://doi.org/10.1016/s0020-7683(02)00152-x

    Article  MATH  Google Scholar 

  37. Lam D, Yang F, Chong A, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508. https://doi.org/10.1016/s0022-5096(03)00053-x

    Article  MATH  Google Scholar 

  38. Eringen A (1966) Linear theory of micropolar elasticity. J Math Mech 15(6):909–923

    MathSciNet  MATH  Google Scholar 

  39. Lim CW, Zhang G, Reddy JN (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313. https://doi.org/10.1016/j.jmps.2015.02.001

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang Y, Liang C (2019) Wave propagation characteristics in nanoporous metal foam nanobeams. Results Phys 12:287–297. https://doi.org/10.1016/j.rinp.2018.11.080

    Article  Google Scholar 

  41. Amir S, Soleimani-Javid Z, Arshid E (2019) Size-dependent free vibration of sandwich micro beam with porous core subjected to thermal load based on SSDBT. ZAMM J Appl Math Mech. https://doi.org/10.1002/zamm.201800334

    Article  Google Scholar 

  42. Wang Y, Zhao H, Ye C, Zu J (2018) A porous microbeam model for bending and vibration analysis based on the sinusoidal beam theory and modified strain gradient theory. Int J Appl Mech 10:1850059. https://doi.org/10.1142/s175882511850059x

    Article  Google Scholar 

  43. Akbarzadeh Khorshidi M (2019) Effect of nano-porosity on postbuckling of non-uniform microbeams. SN Appl Sci 1:677. https://doi.org/10.1007/s42452-019-0704-0

    Article  Google Scholar 

  44. Xie B, Sahmani S, Safaei B, Xu B (2020) Nonlinear secondary resonance of FG porous silicon nanobeams under periodic hard excitations based on surface elasticity theory. Eng Comput 37:1611–1634. https://doi.org/10.1007/s00366-019-00931-w

    Article  Google Scholar 

  45. Phung-Van P, Ferreira A, Nguyen-Xuan H, Thai C (2021) A nonlocal strain gradient isogeometric nonlinear analysis of nanoporous metal foam plates. Eng Anal Bound Elem 130:58–68. https://doi.org/10.1016/j.enganabound.2021.05.009

    Article  MathSciNet  MATH  Google Scholar 

  46. Sahmani S, Fattahi A, Ahmed N (2019) Analytical treatment on the nonlocal strain gradient vibrational response of postbuckled functionally graded porous micro-/nanoplates reinforced with GPL. Eng Comput 36:1559–1578. https://doi.org/10.1007/s00366-019-00782-5

    Article  Google Scholar 

  47. Arshid E, Khorasani M, Soleimani-Javid Z, Amir S, Tounsi A (2021) Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory. Eng Comput. https://doi.org/10.1007/s00366-021-01382-y

    Article  Google Scholar 

  48. Wang YQ, Liu YF, Zu JW (2019) On scale-dependent vibration of circular cylindrical nanoporous metal foam shells. Microsyst Technol 25:2661–2674. https://doi.org/10.1007/s00542-018-4262-y

    Article  Google Scholar 

  49. Karamanli A, Vo T (2021) Bending, vibration, buckling analysis of bi-directional FG porous microbeams with a variable material length scale parameter. Appl Math Model 91:723–748. https://doi.org/10.1016/j.apm.2020.09.058

    Article  MathSciNet  MATH  Google Scholar 

  50. Karamanli A, Vo T (2021) A quasi-3D theory for functionally graded porous microbeams based on the modified strain gradient theory. Compos Struct 257:113066. https://doi.org/10.1016/j.compstruct.2020.113066

    Article  Google Scholar 

  51. Karamanli A, Vo T (2020) Size-dependent behaviour of functionally graded sandwich microbeams based on the modified strain gradient theory. Compos Struct 246:112401. https://doi.org/10.1016/j.compstruct.2020.112401

    Article  Google Scholar 

  52. Karamanli A, Vo T (2021) Finite element model for carbon nanotube-reinforced and graphene nanoplatelet-reinforced composite beams. Compos Struct 264:113739. https://doi.org/10.1016/j.compstruct.2021.113739

    Article  Google Scholar 

  53. Karamanli A, Aydogdu M (2019) On the vibration of size dependent rotating laminated composite and sandwich microbeams via a transverse shear-normal deformation theory. Compos Struct 216:290–300. https://doi.org/10.1016/j.compstruct.2019.02.044

    Article  Google Scholar 

  54. Dehrouyeh-Semnani AM, Nikkhah-Bahrami M (2015) A discussion on incorporating the Poisson effect in microbeam models based on modified couple stress theory. Int J Eng Sci 86:20–25. https://doi.org/10.1016/j.ijengsci.2014.10.003

    Article  Google Scholar 

  55. Ren H, Zhuang X, Oterkus E, Zhu H, Rabczuk T (2021) Nonlocal strong forms of thin plate, gradient elasticity, magneto-electro-elasticity and phase-field fracture by nonlocal operator method. Eng Comput. https://doi.org/10.1007/s00366-021-01502-8

    Article  Google Scholar 

  56. Karami B, Janghorban M, Rabczuk T (2020) Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory. Compos B Eng 182:107622. https://doi.org/10.1016/j.compositesb.2019.107622

    Article  Google Scholar 

  57. Karami B, Janghorban M, Rabczuk T (2019) Analysis of elastic bulk waves in functionally graded triclinic nanoplates using a quasi-3D bi-Helmholtz nonlocal strain gradient model. Eur J Mech A Solids 78:103822. https://doi.org/10.1016/j.euromechsol.2019.103822

    Article  MathSciNet  MATH  Google Scholar 

  58. Arefi M, Kiani M, Rabczuk T (2019) Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets. Compos B Eng 168:320–333. https://doi.org/10.1016/j.compositesb.2019.02.057

    Article  Google Scholar 

  59. Ma X, Sahmani S, Safaei B (2021) Quasi-3D large deflection nonlinear analysis of isogeometric FGM microplates with variable thickness via nonlocal stress–strain gradient elasticity. Eng Comput. https://doi.org/10.1007/s00366-021-01390-y

    Article  Google Scholar 

  60. Chen S, Sahmani S, Safaei B (2021) Size-dependent nonlinear bending behavior of porous FGM quasi-3D microplates with a central cutout based on nonlocal strain gradient isogeometric finite element modelling. Eng Comput 37:1657–1678. https://doi.org/10.1007/s00366-021-01303-z

    Article  Google Scholar 

  61. Thai C, Ferreira A, Nguyen-Xuan H, Nguyen L, Phung-Van P (2021) A nonlocal strain gradient analysis of laminated composites and sandwich nanoplates using meshfree approach. Eng Comput. https://doi.org/10.1007/s00366-021-01501-9

    Article  Google Scholar 

  62. Moayedi H, Ebrahimi F, Habibi M, Safarpour H, Foong L (2020) Application of nonlocal strain–stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell. Eng Comput 37:3359–3374. https://doi.org/10.1007/s00366-020-01002-1

    Article  Google Scholar 

  63. Thang P, Do D, Lee J, Nguyen-Thoi T (2021) Size-dependent analysis of functionally graded carbon nanotube-reinforced composite nanoshells with double curvature based on nonlocal strain gradient theory. Eng Comput. https://doi.org/10.1007/s00366-021-01517-1

    Article  Google Scholar 

  64. Thai T, Rabczuk T, Bazilevs Y, Meschke G (2016) A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis. Comput Methods Appl Mech Eng 304:584–604. https://doi.org/10.1016/j.cma.2016.02.031

    Article  MathSciNet  MATH  Google Scholar 

  65. Bisheh H, Wu N, Rabczuk T (2021) A study on the effect of electric potential on vibration of smart nanocomposite cylindrical shells with closed circuit. Thin Walled Struct 166:108040. https://doi.org/10.1016/j.tws.2021.108040

    Article  Google Scholar 

  66. Arefi M, Mohammad-Rezaei Bidgoli E, Rabczuk T (2019) Effect of various characteristics of graphene nanoplatelets on thermal buckling behavior of FGRC micro plate based on MCST. Eur J Mech A Solids 77:103802. https://doi.org/10.1016/j.euromechsol.2019.103802

    Article  MathSciNet  MATH  Google Scholar 

  67. Aria A, Rabczuk T, Friswell M (2019) A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams. Eur J Mech A Solids 77:103767. https://doi.org/10.1016/j.euromechsol.2019.04.002

    Article  MathSciNet  MATH  Google Scholar 

  68. Sahmani S, Aghdam M, Rabczuk T (2018) Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs. Compos Struct 198:51–62. https://doi.org/10.1016/j.compstruct.2018.05.031

    Article  Google Scholar 

  69. Thai T, Zhuang X, Rabczuk T (2021) A nonlinear geometric couple stress based strain gradient Kirchhoff–Love shell formulation for microscale thin-wall structures. Int J Mech Sci 196:106272. https://doi.org/10.1016/j.ijmecsci.2021.106272

    Article  Google Scholar 

  70. Adab N, Arefi M, Amabili M (2022) A comprehensive vibration analysis of rotating truncated sandwich conical microshells including porous core and GPL-reinforced face-sheets. Compos Struct 279:114761. https://doi.org/10.1016/j.compstruct.2021.114761

    Article  Google Scholar 

  71. Dehsaraji M, Arefi M, Loghman A (2021) Size dependent free vibration analysis of functionally graded piezoelectric micro/nano shell based on modified couple stress theory with considering thickness stretching effect. Defence Technol 17:119–134. https://doi.org/10.1016/j.dt.2020.01.001

    Article  Google Scholar 

  72. Dehsaraji M, Arefi M, Loghman A (2020) Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect. Steel Compos Struct 34(5):657–670. https://doi.org/10.12989/scs.2020.34.5.657

    Article  Google Scholar 

  73. Arefi M, Amabili M (2021) A comprehensive electro-magneto-elastic buckling and bending analyses of three-layered doubly curved nanoshell, based on nonlocal three-dimensional theory. Compos Struct 257:113100. https://doi.org/10.1016/j.compstruct.2020.113100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armagan Karamanli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karamanli, A., Vo, T.P. & Civalek, O. Finite element formulation of metal foam microbeams via modified strain gradient theory. Engineering with Computers 39, 751–772 (2023). https://doi.org/10.1007/s00366-022-01666-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01666-x

Keywords

Navigation