Skip to main content
Log in

Wrinkling of finite-strain membranes with mixed solid-shell elements

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This work addresses the wrinkling of thin shells and membranes by stackable solid shells developed by our group. Formulation is now equipped with constitutive-based thickness extensibility. Both tension and shearing deformation modes are considered. The solid-shell formulation follows our previous work, with assumed natural shear strains and assumed in-plane stresses with condensed-out stress parameters. In addition, a combined finite strain plasticity constitutive/element framework is adopted, with the details concerning integration and null stress components being described. Four examples are presented with excellent results from the point of view of accuracy and realism. Specifically, a bilayer problem is solved with high accuracy with respect to experimental measurements, which would be difficult to address with classical shell or membrane formulations. Overall, the reduced constitutive law and the solid shell is applicable to problems that otherwise would require dedicated formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Flynn CO, McCormack BAO (2009) A three-layer model of skin and its application in simulating wrinkling. Comput Methods Biomech Biomed Eng Imaging Vis 12(2):125–134

    Article  Google Scholar 

  2. Feng W, Yu Y, Kim B (2010) A deformation transformer for real-time cloth animation. ACM Trans Gr 29(4):108

    Article  Google Scholar 

  3. Vladimirov I, Pietryga MP, Reese S (2010) Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming. Int J Plast 26:659–687

    Article  MATH  Google Scholar 

  4. Abdelkhalek S, Zahrouni H, Legrand N, Potier-Ferry M (2015) Post-buckling modeling for strips under tension and residual stresses under asymptotic numerical method. Int J Mech Sci 104:126–137

    Article  Google Scholar 

  5. Silvestre N (2016) Wrinkling of stretched thin sheets: is restrained Poisson’s effect the sole cause? Eng Struct 106:195–208

    Article  Google Scholar 

  6. Friedl N, Rammerstorfer FG, Fischer FD (2000) Buckling of stretched strips. Comput Struct 78(1–3):185–190

    Article  Google Scholar 

  7. Nayyar V, Ravi-Chandar K, Huang R (2011) Stretch-induced stress patterns and wrinkles in hyperelastic thin sheets. Int J Solids Struct 48:3471–3483

    Article  Google Scholar 

  8. Healey TJ, Li Q, Cheng R-B (2013) Wrinkling behavior of highly stretched rectangular elastic films via parametric global bifurcation. J Nonlinear Sci 23:777–805

    Article  MathSciNet  MATH  Google Scholar 

  9. Fu C, Wang T, Xu F, Huo Y, Potier-Ferry M (2019) A modeling and resolution framework for wrinkling in hyperelastic sheets at finite membrane strain. J Mech Phys Solids 124:446–470

    Article  MathSciNet  Google Scholar 

  10. Cochelin B, Damil N, Potier-Ferry M (1994) Asymptotic-numerical methods and Padé approximants for non-linear elastic structures. Int J Numer Methods Eng 37(7):1187–1213

    Article  MATH  Google Scholar 

  11. Li Q, Healey TJ (2016) Stability boundaries for wrinkling in highly stretched elastic sheets. J Mech Phys Solids 97:260–274

    Article  MathSciNet  Google Scholar 

  12. Taylor M, Bertoldi K, Steigmann DJ (2014) Spatial resolution of wrinkle patterns in thin elastic sheets at finite strain. J Mech Phys Solids 62:163–180

    Article  MathSciNet  MATH  Google Scholar 

  13. Areias P, Mota Soares CA, Rabczuk T, Garção J (2016) A finite-strain solid-shell using local Löwdin frames and least-squares strains. Comput Method Appl Mech 311:112–133

    Article  MATH  Google Scholar 

  14. Bathe K-J, Dvorkin EN (1986) A formulation of general shell elements—the use of mixed interpolation of tensorial components. Int J Numer Methods Eng 22:697–722

    Article  MATH  Google Scholar 

  15. Dvorkin E, Bathe KJ (1984) A continuum mechanics based four node shell element for general nonlinear analysis. Eng Comput 1:77–88

    Article  Google Scholar 

  16. Areias P, Rabczuk T, César de Sá J, Natal Jorge R (2015) A semi-implicit finite strain shell algorithm using in-plane strains based on least-squares. Comput Mech 55(4):673–696

    Article  MathSciNet  MATH  Google Scholar 

  17. Wolfram Research Inc (2021) Mathematica 13.0.0, Champaign, Illinois. https://www.wolfram.com/mathematica. Accessed 04 Oct 2021

  18. Korelc J (2002) Multi-language and multi-environment generation of nonlinear finite element codes. Eng Comput 18(4):312–327

    Article  Google Scholar 

  19. Mandel J (1973) Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int J Solids Struct 9:725–740

    Article  MATH  Google Scholar 

  20. Andelfinger U, Ramm E (1993) EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. Int J Numer Methods Eng 36:1311–1337

    Article  MATH  Google Scholar 

  21. Buchter N, Ramm E, Roehl D (1994) Three-dimensional extension of nonlinear shell formulation based on the enhanced assumed strain concept. Int J Numer Methods Eng 37:2551–3568

    Article  MATH  Google Scholar 

  22. Eidel B, Gruttmann F (2003) Elastoplastic orthotropy at finite strains: multiplicative formulation and numerical implementation. Comput Mater Sci 28:732–742

    Article  Google Scholar 

  23. Kröner E (1960) Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Arch Ration Mech Anal 4:273–334

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee EH (1969) Elasto-plastic deformation at finite strains. J Appl Mech ASME 36:1–6

    Article  MATH  Google Scholar 

  25. Lubliner J (1990) Plasticity theory. MacMillan, New York

    MATH  Google Scholar 

  26. Gurtin ME (1981) An introduction to continuum mechanics, volume 158 of mathematics in science and engineering. Academic Press, New York

    Google Scholar 

  27. Mandel J (1974) Foundations of continuum thermodynamics, chapter thermodynamics and plasticity. MacMillan, London, pp 283–304

    Google Scholar 

  28. Hill R (1948) A theory of yielding and plastic flow of anisotropic metals. Proc R Soc Lond 193:281–297

    MathSciNet  MATH  Google Scholar 

  29. Areias PS. Portuguese Software Association (ASSOFT) registry number 2281/D/17. http://www.simplassoftware.com. Accessed 11 Oct 2021

  30. DuPont de Nemours, Inc, Wilmington, Delaware, USA (2018) Dupont Kapton HN polyimide film. Technical report

  31. Wong WY, Pellegrino S (2006) Wrinkled membranes part I: experiments. J Mech Mater Struct 1(1):3

    Article  Google Scholar 

  32. Wong YW, Pellegrino S (2006) Wrinkled membranes part III: numerical simulations. J Mech Mater Struct 1(1):63–95

    Article  Google Scholar 

  33. Lecieux Y, Bouzidi R (2012) Numerical wrinkling prediction of thin hyperelastic structures by direct energy minimization. Adv Eng Softw 50:57–68

    Article  Google Scholar 

  34. Dharmadasa BY, McCallum MW, Mierunalan S, Dassanayake SP, Mallikarachchi CHMY, Jiménez FL (2020) Formation of plastic creases in thin polyimide films. J Appl Mech ASME 87:051009–11

    Article  Google Scholar 

  35. Takei A, Brau F, Roman B, Bico J (2011) Stretch-induced wrinkles in reinforced m. EPL Europhys Lett Assoc 96:64001

    Article  Google Scholar 

  36. Concha A, McIver JW III, Mellado P, Clarke D, Tchernyshyov O, Leheny RL (2007) Wrinkling of a bilayer membrane. Phys Rev E 75:016609

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of FCT, through IDMEC, under LAETA, project UIDB/50022/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Areias.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Areias, P., Silvestre, N. & Rabczuk, T. Wrinkling of finite-strain membranes with mixed solid-shell elements. Engineering with Computers 38, 5309–5320 (2022). https://doi.org/10.1007/s00366-022-01614-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01614-9

Keywords

Navigation