Classical elastic plate theory
Kirchhoff plate theory assumes that the normal stress in the thickness direction can be ignored and the normal of the midplane of the plate remains normal after deformation. Hence, all stresses and strains can be expressed by the deflection w of the midplane of the plate. Considering the plate element shown in Fig. 2, the in-plane displacements u and v can, therefore, be expressed in terms of the first derivatives of w, i.e.
$$\begin{aligned}&u(x,y,z)&=-z {\frac{\partial w}{\partial x}}; \,\, v(x,y,z)\nonumber \\&\quad =-z {\frac{\partial w}{\partial y}};\,\, w (x,y,z)\simeq w (x,y,0)\cong w(x,y). \end{aligned}$$
(25)
The strain resultant \({\varvec{\kappa }}\) can be obtained by
$$\begin{aligned} {\varvec{\kappa }}=\begin{bmatrix} \kappa _x, \kappa _y, \kappa _{xy}\end{bmatrix}^T=\begin{bmatrix} -\frac{\partial ^2 w}{\partial x^2}, -\frac{\partial ^2 w}{\partial y^2}, -\frac{2 \partial ^2 w}{\partial x\partial y} \end{bmatrix}^T, \end{aligned}$$
(26)
where \(\kappa _x\) and \(\kappa _y\) indicates the curvature of the midplane of the plate in the x- and y- direction while \(\kappa _{xy}\) refers to the torsion, respectively.
The stress resultants of the Kirchhoff plate are given by
$$\begin{aligned} {\mathbf {M}}=\begin{bmatrix}M_x, M_y, M_{xy}\end{bmatrix}^T, \end{aligned}$$
(27)
where \(M_x\) and \(M_y\) are the bending moment per unit length around the y- and negative x-axes, respectively, while \(M_{xy}(=M_{yx})\) is the torque per unit length.
With a linear stress distribution in the z-direction and assuming a thickness of t, the stresses can be computed by
$$\begin{aligned} \sigma _x=\frac{12 M_x }{t^3} z; \sigma _y=\frac{12 M_y }{t^3} z; \tau _{xy}&=\tau _{yx}={\frac{12 M_{xy}}{t^3} z}. \end{aligned}$$
(28)
The Cauchy stress tensor can also be expressed in terms of the linear strain tensor assuming Hooke’s law:
$$\begin{aligned} \sigma&=\frac{E}{1-\nu ^2} \big (\nu \,\text{ tr } \varepsilon \, {\mathbf {I}}_{2\times 2}+(1-\nu ) \varepsilon \big ) \end{aligned}$$
(29)
with
$$\begin{aligned} \varepsilon&=\begin{bmatrix}\varepsilon _{11} &{} \varepsilon _{12}\\ \varepsilon _{21}&{} \varepsilon _{22}.\end{bmatrix} \end{aligned}$$
Finally, the constitutive model can be formulated in terms of the stress and strain resultants by
$$\begin{aligned} {\mathbf {M}}={\mathbf {D}}_{plate}{\varvec{\kappa }}, \end{aligned}$$
(30)
where \({\mathbf {D}}_{plate}\) is the constitutive matrix defined as
$$\begin{aligned} {\mathbf {D}}_{plate}=\frac{E t^3}{12(1-\nu ^2)}\left[ \begin{array}{ccc} 1 &{} \nu &{} 0 \\ \nu &{} 1 &{} 0 \\ 0 &{} 0 &{} \frac{1-\nu }{2} \\ \end{array} \right] =\ D_0\left[ \begin{array}{ccc} 1 &{} \nu &{} 0 \\ \nu &{} 1 &{} 0 \\ 0 &{} 0 &{} \frac{1-\nu }{2} \\ , \end{array} \right] \end{aligned}$$
(31)
where \(D_0=\frac{E t^3}{12(1-\nu ^2)}\) is the Kirchhoff plate’s bending stiffness, such that Eq.(30) can be rewritten as
$$\begin{aligned} \overline{{\mathbf {M}}}=\begin{bmatrix}M_x&{} M_{xy}\\ M_{yx}&{} M_y\end{bmatrix}=D_0 \big (\nu \,\text{ tr }\overline{{\varvec{\kappa }}}\, {\varvec{I}}_{2\times 2}+ (1-\nu )\overline{{\varvec{\kappa }}}\big ) \end{aligned}$$
(32)
$$\begin{aligned} \overline{{\varvec{\kappa }}}=\nabla ^T\nabla w=\begin{bmatrix}\frac{\partial ^2 w}{\partial x^2}&{}\frac{\partial ^2 w}{\partial x\partial y}\\ \frac{\partial ^2 w}{\partial y\partial x}&{} \frac{\partial ^2 w}{\partial y^2}. \end{bmatrix} \end{aligned}$$
(33)
Nonlocal dynamic Kirchhoff plate formulation
The total Lagrange energy functional for the Kirchhoff plate can be expressed as
$$\begin{aligned} L({\dot{w}},w)&=\int _{\Omega }\frac{1}{2}\rho t {\dot{w}}^2\text {d}\Omega \nonumber \\&\quad -\int _\Omega \left( \frac{1}{2}\overline{{\mathbf {M}}} :\overline{{\varvec{\kappa }}} -q_z w\right)\text {d}\Omega - \int _{\partial \Omega }\overline{M_n} \frac{\partial w}{\partial n} d S\nonumber \\&=\int _{\Omega }\frac{1}{2}\rho t {\dot{w}}^2\text {d}\Omega -\int _\Omega \left( \frac{1}{2}\overline{{\mathbf {M}}}: \nabla ^T\nabla w -q_z w\right)\text {d}\Omega \nonumber \\&\quad - \int _{\partial \Omega }\overline{M_n} \frac{\partial w}{\partial n} d S \end{aligned}$$
(34)
with \({\dot{w}}=\frac{\partial w}{\partial t}\); \(\rho\) is the density of the plate and \(q_z\) a distributed load in the z-direction. Replacing the local Hessian \(\nabla ^T\nabla w\) with the nonlocal Hessian \(\tilde{\nabla }^T\tilde{\nabla }w\) in Eq.34, we obtain
$$\begin{aligned} L({\dot{w}},w)&=\int _{\Omega }\frac{1}{2}\rho t {\dot{w}}^2\text {d}\Omega -\int _\Omega \left( \frac{1}{2}\overline{{\mathbf {M}}}:\tilde{\nabla }^T\tilde{\nabla }w -q_z w\right)\text {d}\Omega \nonumber \\&\quad - \int _{\partial \Omega }\overline{M_n} \frac{\partial w}{\partial n} d S \end{aligned}$$
(35)
The integral of the Lagrangian L between two time steps \(t_1\) and \(t_2\) is \(\digamma =\int _{t_1}^{t_2} L({\dot{w}},w) d t\). According to the principle of least action, we can write
$$\begin{aligned} \digamma =&\int _{t_1}^{t_2}\int _{\Omega }\frac{1}{2}\rho t {\dot{w}}^2 \text {d}\Omega \text {d}t-\int _{t_1}^{t_2}\int _\Omega \left( \frac{1}{2}\overline{{\mathbf {M}}}: \tilde{\nabla }^T\tilde{\nabla }w -q_z w\right)d \Omega \text {d}t \nonumber \\&\quad -\int _{t_1}^{t_2} \int _{\partial \Omega }\overline{M_n} \frac{\partial w}{\partial n} d S \text {d}t. \end{aligned}$$
(36)
Omitting the external work term \(\int _{t_1}^{t_2} \int _{\partial \Omega }\overline{M_n} \frac{\partial w}{\partial n} d S \text {d}t\), the first variation of \(\delta \digamma\) leads to
$$\begin{aligned} \delta \digamma =&\int _{t_1}^{t_2}\int _\Omega (\rho t {\dot{w}}\cdot \delta {\dot{w}}- \overline{{\mathbf {M}}}: \tilde{\nabla }^T\tilde{\nabla }\delta w + q_z \delta w )\text {d}\Omega \text {d}t\\ =&\int _{t_1}^{t_2}\int _\Omega (-\rho _i t \ddot{w_i}\cdot \delta w_i-\overline{{\mathbf {M}}_i}:\tilde{\nabla }^T\tilde{\nabla }\delta w_i +q_z \delta w_i) \text {d}\Omega \text {d}t\\ =&\int _{t_1}^{t_2}\int _\Omega \big (-\rho _i t \ddot{w_i}\cdot \delta {w_i}-\overline{{\mathbf {M}}_i}:[2\int _{\mathcal S_i} \phi ({\mathbf \xi }_{ij}) (\delta w_{ij}({\mathbf \xi }_{ij}\otimes {\mathbf \xi }_{ij}\\&\quad - {\mathbf {K}}_{3i }{\mathbf {K}}_{2i}^{-1} {\mathbf \xi }_{ij}) dV_j : {\mathbf {K}}_{4i}^{-1}]+q_z \delta w_i \big )\text {d}\Omega \text {d}t\\ =&\int _{t_1}^{t_2}\int _\Omega \big ( -\rho _i t \ddot{w_i}\cdot \delta {w_i}- 2\int _{\mathcal S_i} \overline{{\mathbf {M}}_i} \\&\quad \phi ({\mathbf \xi }_{ij}) (\delta w_j-\delta w_i)({\mathbf \xi }_{ij}\otimes {\mathbf \xi }_{ij}- {\mathbf {K}}_{3i } {\mathbf {K}}_{2i}^{-1} {\mathbf \xi }_{ij}) dV_j : {\mathbf {K}}_{4i }^{-1} +q_z \delta w_i \big )\text {d}\Omega \text {d}t\\ =&\int _{t_1}^{t_2}\int _\Omega \Big (-\rho _i t \ddot{w_i}\cdot \delta {w_i}- 2\{\int _{\mathcal S_i'} [\overline{{\mathbf {M}}_j} \phi ({\mathbf \xi }_{ji}) \delta w_i\\&\quad ({\mathbf \xi }_{ji}\otimes {\mathbf \xi }_{ji}- {\mathbf {K}}_{3i } {\mathbf {K}}_{2i }^{-1} {\mathbf \xi }_{ji}) :{\mathbf {K}}_{4i }^{-1}]dV_j -\\&\int _{\mathcal S_i} [ \overline{{\mathbf {M}}_i} \phi ({\mathbf \xi }_{ij}) \delta w_i({\mathbf \xi }_{ij}\otimes {\mathbf \xi }_{ij}- {\mathbf {K}}_{3j} {\mathbf {K}}_{2j}^{-1} {\mathbf \xi }_{ij}) : {\mathbf {K}}_{4j}^{-1} ]dV_j \}+ q_z \delta w_i\Big ) \text {d}\Omega \text {d}t, \end{aligned}$$
where the boundary condition \(\delta w(t_1)=0,\,\delta w(t_2)=0\) is considered in the above derivation. According to Hamilton’s principle, for any \(\delta w_i\), the first variation of the functional \(\digamma\) should be zero, which leads to
$$\begin{aligned}&2\int _{\mathcal S_i} \overline{{\mathbf {M}}_i} \phi ({\mathbf \xi }_{ij}) ({\mathbf \xi }_{ij}\otimes {\mathbf \xi }_{ij}- {\mathbf {K}}_{3i} {\mathbf {K}}_{2i}^{-1} {\mathbf \xi }_{ij}) : {\mathbf {K}}_{4i}^{-1} dV_j\nonumber \\&\quad -2\int _{\mathcal S_i'} \overline{{\mathbf {M}}_j} \phi ({\mathbf \xi }_{ji}) ({\mathbf \xi }_{ji}\otimes {\mathbf \xi }_{ji}- {\mathbf {K}}_{3j} {\mathbf {K}}_{2j}^{-1} {\mathbf \xi }_{ji}) : {\mathbf {K}}_{4j}^{-1} dV_j\nonumber \\&+q_z =\rho _i t \ddot{ w} _i \,\,\, \forall {\mathbf {x}}_i\in \Omega . \end{aligned}$$
(37)
The nonlocal form is correlated to the local form by
According to Eq.23, we devise the explicit form of \(\tilde{\nabla }^T\tilde{\nabla }:\overline{{\mathbf {M}}_i}\)
$$\begin{aligned}&\tilde{\nabla }^T\tilde{\nabla }: \overline{{\mathbf {M}}_i}=2\int _{\mathcal S_i} \phi ({\mathbf \xi }_{ij}) \overline{{\mathbf {M}}_i} \cdot \begin{bmatrix} e_{i11} &{} e_{i12} \\ e_{i21} &{} e_{i22} \\ \end{bmatrix} d V_j\nonumber \\&\quad -2\int _{\mathcal S_i'} \phi ({\mathbf \xi }_{ji}) \overline{{\mathbf {M}}_j} \cdot \begin{bmatrix} e_{j11} &{} e_{j12} \\ e_{j21} &{} e_{j22} \\ \end{bmatrix} d V_j. \end{aligned}$$
(39)
As Eq. 37 suffers from zero-energy modes, we introduce the so-called nonlocal operator energy functional, which is described in the next section.
Operator energy functional
For the Kirchhoff plate, the maximal order of partial derivatives in Eq.37 is two, hence we select the second order of nonlocal operators in Eq.5. The operator energy functional for second order nonlocal operators of a scalar field w for point \({\mathbf {x}}_i\) can be expressed as
$$\begin{aligned} \mathcal F_i^{hg}=&\frac{\alpha _w}{2 m_i} \int _{\mathcal S_i} \phi ({\mathbf \xi }_{ij})\big ({\mathbf {s}}_{ij}^T\tilde{\partial }_\alpha w_i -w_{ij}\big )^2 d V_j, \end{aligned}$$
(40)
where \({\mathbf {s}}_{ij}=(x_{ij},y_{ij},x_{ij}^2/2,x_{ij} y_{ij},y_{ij}^2/2)^T\), \(\tilde{\partial }_\alpha w_i=(\frac{{\partial w_i}}{ \partial x},\frac{{\partial w_i}}{ \partial y},\frac{\partial ^2 w_i}{ \partial x^2},\frac{\partial ^2 w_i}{ \partial xy },\frac{\partial ^2 w_i}{ \partial y^2})^T\).
The first variation of \(\mathcal F_i^{hg}\) is
$$\begin{aligned} \delta \mathcal F_i^{hg}=&\frac{\alpha _w}{ m_i} \int _{\mathcal S_i} \phi ({\mathbf \xi }_{ij})\big ({\mathbf {s}}_{ij}^T\tilde{\partial }_\alpha w_i -w_{ij}\big )^T\big (\tilde{\partial }_\alpha \delta w_i {\mathbf {s}}_{ij}^T-\delta w_{ij}\big ) d V_j\nonumber \\ =&\frac{\alpha _w}{ m_i} \int _{\mathcal S_i} \phi ({\mathbf \xi }_{ij})\big ({\mathbf {s}}_{ij}^T\tilde{\partial }_\alpha w_i -w_{ij}\big )^T \tilde{\partial }_\alpha \delta w_i {\mathbf {s}}_{ij}^Td V_j \nonumber \\&\quad -\frac{\alpha _w}{ m_i} \int _{\mathcal S_i} \phi ({\mathbf \xi }_{ij})\big ({\mathbf {s}}_{ij}^T\tilde{\partial }_\alpha w_i -w_{ij}\big )^T \delta w_{ij}d V_j\nonumber \\ =&\frac{\alpha _w}{ m_i} \int _{\mathcal S_i} \phi ({\mathbf \xi }_{ij})\big ({\mathbf {s}}_{ij}^T\tilde{\partial }_\alpha w_i -w_{ij}\big ){\mathbf {s}}_{ij}^T d V_j \cdot \tilde{\partial }_\alpha \delta w_i\nonumber \\&\quad -\frac{\alpha _w}{ m_i} \int _{\mathcal S_i} \phi ({\mathbf \xi }_{ij})\big ({\mathbf {s}}_{ij}^T\tilde{\partial }_\alpha w_i -w_{ij}\big )^T \delta w_{ij}d V_j\nonumber \\ =&\frac{\alpha _w}{ m_i}\bigg (\tilde{\partial }_\alpha w_i \int _{\mathcal S_i} \phi ({\mathbf \xi }_{ij}){\mathbf {s}}_{ij}{\mathbf {s}}_{ij}^Td V_j-\int _{\mathcal S_i} \phi ({\mathbf \xi }_{ij})w_{ij}{\mathbf {s}}_{ij}^Td V_j\bigg )\cdot \tilde{\partial }_\alpha \delta w_i-\nonumber \\&\frac{\alpha _w}{ m_i} \int _{\mathcal S_i} \phi ({\mathbf \xi }_{ij})\big ({\mathbf {s}}_{ij}^T\tilde{\partial }_\alpha w_i -w_{ij}\big )^T \delta w_{ij}d V_j\nonumber \\ =&\frac{\alpha _w}{ m_i}\bigg (\int _{\mathcal S_i} \phi ({\mathbf \xi }_{ij})w_{ij}{\mathbf {s}}_{ij}^Td V_j-\int _{\mathcal S_i} \phi ({\mathbf \xi }_{ij})w_{ij}{\mathbf {s}}_{ij}^Td V_j\bigg )\cdot \tilde{\partial }_\alpha \delta w_i-\nonumber \\&\frac{\alpha _w}{ m_i} \int _{\mathcal S_i} \phi ({\mathbf \xi }_{ij})\big ({\mathbf {s}}_{ij}^T\tilde{\partial }_\alpha w_i -w_{ij}\big )^T \delta w_{ij}d V_j\nonumber \\ =&\frac{\alpha _w}{ m_i} \int _{\mathcal S_i} \phi ({\mathbf \xi }_{ij})\big (w_{ij}-{\mathbf {s}}_{ij}^T\tilde{\partial }_\alpha w_i \big ) ^T (\delta w_{j} -\delta w_{i} )d V_j. \end{aligned}$$
(41)
Taking the variation of \(\int _{\Omega } \mathcal F_i^{hg}d V_i\) yields
$$\begin{aligned}&\int _{\Omega } \mathcal F_i^{hg}d V_i=\int _{\Omega }\frac{\alpha _w}{ m_i} \int _{\mathcal S_i} \phi ({\mathbf \xi }_{ij})\big (w_{ij}-{\mathbf {s}}_{ij}^T\tilde{\partial }_\alpha w_i \big ) ^T\nonumber \\&\quad (\delta w_{j} -\delta w_{i} )d V_jd V_i\nonumber \\&=\int _{\Omega } \left( \int _{\mathcal S_i'} \frac{\alpha _w}{m_j}\phi ({\mathbf \xi }_{ji} )(w_{ji} -\tilde{\partial }_\alpha w_j{\mathbf {s}}_{ji}^T )d V_j \right. \nonumber \\&\quad \left. -\int _{\mathcal S_i} \frac{\alpha _w}{m_i} \phi ( {\mathbf \xi }_{ij})(w_{ij} -\tilde{\partial }_\alpha w_i{\mathbf {s}}_{ij}^T )d V_j\right) \delta w_id V_i. \end{aligned}$$
(42)
For the scalar field w, the internal force due to the operator energy functional is given by
$$\begin{aligned} \int _{\mathcal S_i'} {\varvec{f}}_{ji} d V_j-\int _{\mathcal S_i} {\varvec{f}}_{ij} d V_j, \end{aligned}$$
(43)
where \({\varvec{f}}_{ij} =\frac{\alpha _w}{m_i} \phi ({\mathbf \xi }_{ij} )(w_{ij} -\tilde{\partial }_\alpha w_i\,{\mathbf {s}}_{ij}^T )\) indicates the zero-energy internal force. Finally, the correspondence between local and nonlocal formulation and the operator functional enhanced governing equation of Kirchhoff plate can be expressed as
$$\begin{aligned}&\int _{\mathcal S_i}\Big (2 \phi ({\mathbf \xi }_{ij})\overline{{\mathbf {M}}_i} \cdot \begin{bmatrix} e_{i11} &{} e_{i12} \\ e_{i21} &{} e_{i22} \\ \end{bmatrix} +\frac{\alpha _w}{m_i} \phi ({\mathbf \xi }_{ij})(w_{ij} -\tilde{\partial }_\alpha w_i\,{\mathbf {s}}_{ij}^T )\Big )dV_j-\nonumber \\&\int _{\mathcal S_i'} \Big (2 \phi ({\mathbf \xi }_{ji}) \overline{{\mathbf {M}}_j} \cdot \begin{bmatrix} e_{j11} &{} e_{j12} \\ e_{j21} &{} e_{j22} \\ \end{bmatrix} +\frac{\alpha _w}{m_j}\phi ({\mathbf \xi }_{ji} )(w_{ji} -\tilde{\partial }_\alpha w_j{\mathbf {s}}_{ji}^T )\Big )\nonumber \\&\quad dV_j +q_z =\rho _i t \ddot{ w} _i \,\,\, \forall {\mathbf {x}}_i \in \Omega . \end{aligned}$$
(45)
Kirchhoff plate boundary conditions
Let us consider the boundary conditions shown in Fig. 3, which can be classified into:
1. Clamped boundary conditions, where the deflection and the slope of the mid-plane is zero. The positioning shift \({\overline{w}}\) and the section rotation \({\overline{\theta }}\) are both zero. The boundary conditions are in the direction parallel to the y-axis (as \(x=0\) clamped boundary):
$$\begin{aligned} w|_{x=0}=0 ; \,\,\frac{\partial w}{\partial x}|_{x=0}=0. \end{aligned}$$
(46)
Parallel to the \(x-\)axis (as \(y=0\) clamped boundary), the Kirchhoff plate boundary conditions is
$$\begin{aligned} w|_{y=0}=0 ; \,\, \frac{\partial w}{\partial y}|_{y=0}=0. \end{aligned}$$
(47)
2. Simply supported Kirchhoff plate boundary conditions where the plate is free to rotate about a line but prevented from deflecting. The positioning shift \({\overline{w}}\) and moment \(\overline{M_n}\) value is zero: parallel to the \(y-\)axis (as \(x=a\) simply supported boundary), the boundary conditions is
$$\begin{aligned}&w|_{x=a}=0 ; \,\,{M_x}|_{x=a}=-D_0 (\frac{\partial ^2 w}{\partial x^2}+\nu \frac{\partial ^2 w}{\partial y^2})_{x=a}=0 \end{aligned}$$
(48)
and Eq.46 can be written as
$$\begin{aligned}&w|_{x=a}=0 ; \,\,{M_x}|_{x=a}=-D_0\frac{\partial ^2 w}{\partial x^2}|_{x=a}=0 \end{aligned}$$
(49)
Similarly, parallel to the \(x-\) axis (as \(y=b\) simply supported boundary), the boundary conditions is
$$\begin{aligned}&w|_{y=b}&=0 ; \,\,{M_y}|_{y=b}=-D_0 (\nu \frac{\partial ^2 w}{\partial x^2}+ \frac{\partial ^2 w}{\partial y^2})_{y=b}\nonumber \\& =-D_0\frac{\partial ^2 w}{\partial y^2}|_{y=b}=0. \end{aligned}$$
(50)