Skip to main content
Log in

Numerical solution of nonlinear delay differential equations of fractional variable-order using a novel shifted Jacobi operational matrix

  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper presents the generalized nonlinear delay differential equations of fractional variable-order. In this article, a novel shifted Jacobi operational matrix technique is introduced for solving a class of multi-terms variable-order fractional delay differential equations via reducing the main problem to an algebraic system of equations that can be solved numerically. The suggested technique is successfully developed for the aforementioned problem. Comprehensive numerical experiments are presented to demonstrate the efficiency, generality, accuracy of proposed scheme and the flexibility of this method. The numerical results compared it with other existing methods such as fractional Adams method (FAM), new predictor–corrector method (NPCM), a new approach, Adams–Bashforth–Moulton algorithm and L1 predictor–corrector method (L1-PCM). Comparing the results of these methods as well as comparing the current method (NSJOM) with the exact solution, indicating the efficiency and validity of this method. Note that the procedure is easy to implement and this technique will be considered as a generalization of many numerical schemes. Furthermore, the error and its bound are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baleanu D, Magin RL, Bhalekar S, Daftardar-Gejji V (2015) Chaos in the fractional order nonlinear Bloch equation with delay. Commun Nonlinear Sci Numer Simul 25(1–3):41–49

    Article  MathSciNet  MATH  Google Scholar 

  2. Diethelm K, Ford NJ, Freed AD (2004) Detailed error analysis for a fractional Adams method. Numer Algorithms 36(1):31–52

    Article  MathSciNet  MATH  Google Scholar 

  3. Kuang Y (1993) Delay differential equations: with applications in population dynamics, vol 191. Academic Press, London

    MATH  Google Scholar 

  4. Jhinga A, Daftardar-Gejji V (2019) A new numerical method for solving fractional delay differential equations. Comput Appl Math 38:166

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang Z (2013) A numerical method for delayed fractional-order differential equations, Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2013

  6. Daftardar-Gejji V, Sukale Y, Bhalekar S (2015) Solving fractional delay differential equations: a new approach. Int J Theory Appl 18:2

  7. SaedshoarHeris M, Javidi M (2017) On fractional backward differential formulas for fractional delay differential equations with periodic and anti-periodic conditions. Appl Numer Math 118:203–220

    Article  MathSciNet  MATH  Google Scholar 

  8. Adomian G (1988) A review of decomposition method in applied mathematics. J Math Anal Appl 135:501–544

    Article  MathSciNet  MATH  Google Scholar 

  9. Bhalekar S, Daftardar-Gejji V (2011) Convergence of the new iterative method. Int J Differ Equ

  10. Bhalekar S, Daftardar-Gejji V (2011) A predictor-corrector scheme for solving non-linear delay differential equations of fractional order. J Fract Calculus Appl 1(5):1–8

    MATH  Google Scholar 

  11. Daftardar-Gejji V, Jafari H (2005) Adomian decomposition: a tool for solving a system of fractional differential equations. J Math Anal Appl 301(2):506–518

    Article  MathSciNet  MATH  Google Scholar 

  12. Daftardar-Gejji V, Jafari H (2006) An iterative method for solving non linear functional equations. J Math Anal Appl 316:753–763

    Article  MathSciNet  MATH  Google Scholar 

  13. Hemeda A (2012) Homotopy perturbation method of solving systems of nonlinear coupled equations. Appl Math Sci 6:4787–4800

    MathSciNet  MATH  Google Scholar 

  14. Wazwaz A (1999) A reliable modification in Adomian decomposition method. Appl Math Comput 102:77–86

    MathSciNet  MATH  Google Scholar 

  15. El-Sayed AA, Baleanu D, Agarwal P (2020) A novel Jacobi operational matrix for numerical solution of multi-term variable-order fractional differential equations. J Taibah Univ Sci 14(1):963–974

    Article  Google Scholar 

  16. Diethelm K, Ford NJ, Freed AD (2002) A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 29:3–22

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghasemi M, Fardi M, Ghaziani R Khoshsiar (2015) Numerical solution of nonlinear delay differential equations of fractional order in reproducing kernel Hilbert space. Appl Math Comput 268:815–831

    MathSciNet  MATH  Google Scholar 

  18. Ockendon JR, Tayler AB (1971) The dynamics of a current collection system for an electric locomotive. Proc R Soc Lond Ser A 322:447–468

    Article  Google Scholar 

  19. Buhmann MD, Iserles A (1993) Stability of the discretized pantograph differential equation. J Math Comput 60:575–589

    Article  MathSciNet  MATH  Google Scholar 

  20. Shakeri F, Dehghan M (2008) Solution of delay differential equations via a homotopy perturbation method. Math Comput Model 48:486–498

    Article  MathSciNet  MATH  Google Scholar 

  21. Shakeri F, Dehghan M (2008) The use of the decomposition procedure of a domian for solving a delay diffusion equation arisingin electrodynamics. Phys Scr Phys Scr 78:065004, 11pp

    MATH  Google Scholar 

  22. Sedaghat S, Ordokhani Y, Dehghan M (2012) Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials. Commun Nonlin Sci Numer Simul 17:4125–4136

    Article  MathSciNet  MATH  Google Scholar 

  23. Ajello WG, Freedman HI, Wu J (1992) A model of stage structured population growth with density depended time delay. SIAM J Appl Math 52:855–869

    Article  MathSciNet  Google Scholar 

  24. Morgado ML, Ford NJ, Lima P (2013) Analysis and numerical methods for fractional differential equations with delay. J Comput Appl Math 252:159–168

    Article  MathSciNet  MATH  Google Scholar 

  25. Čermák J, Horníček J, Kisela T (2016) Stability regions for fractional differential systems with a time delay. Commun Nonlinear Sci Numer Simul 31(1):108–123

    Article  MathSciNet  MATH  Google Scholar 

  26. Lazarević MP, Spasic AM (2009) Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach. Math Comput Model 49(3):475–481

    Article  MathSciNet  MATH  Google Scholar 

  27. Daftardar-Gejji V, Sukale Y, Bhalekar S (2014) A new predictor–corrector method for fractional differential equations. Appl Math Comput 244:158–182

    MathSciNet  MATH  Google Scholar 

  28. Diethelm K, Ford NJ (2002) Analysis of fractional differential equations. J Math Anal Appl 265(2):229–248

    Article  MathSciNet  MATH  Google Scholar 

  29. Tavares D, Almeida R, Torres DFM (2016) Caputo derivatives of fractional variable order: numerical approximations. Commun Nonlinear Sci Numer Simul 35:69–87

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu J, Li X, Wu L (2016) An operational matrix of fractional differentiation of the second kind of Chebyshev polynomial for solving multi-term variable order fractional differential equation. Math Probl Eng, 10 pages

  31. Nagy AM, Sweilam NH, El-Sayed AA (2018) New operational matrix for solving multi-term variable order fractional differential equations. J Comp Nonlinear Dyn 13:011001–011007

    Article  Google Scholar 

  32. El-Sayed AA, Agarwal P (2019) Numerical solution of multi-term variable-order fractional differential equations via shifted Legendre polynomials. Math Meth Appl Sci 42(11):3978–3991

    Article  MATH  Google Scholar 

  33. Mallawi F, Alzaidy JF, Hafez RM (2019) Application of a Legendre collocation method to the space-time variable fractional-order advection-dispersion equation. J Taibah Univ Sci 13(1):324–330

    Article  Google Scholar 

  34. Bhrawy AH, Zaky MA (2014) A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput, Phys

  35. Chen YM, Liu LQ, Li BF et al (2014) Numerical solution for the variable-order linear cable equation with Bernstein polynomials. Appl Math Comput 238:329–341

    MathSciNet  MATH  Google Scholar 

  36. Abbasbandy S, Taati A (2009) Numerical solution of the system of nonlinear Volterra integrodifferential equations with nonlinear differential part by the operational Tau method and error estimation. J Comput Appl Math 231(1):106–113

    Article  MathSciNet  MATH  Google Scholar 

  37. Szeg\(\ddot{o}\) G (1985) Orthogonal polynomials, Am. Math. Soc. Colloq. Pub. 23

  38. Doha EH, Bhrawy AH, Ezz-Eldien SS (2012) A new Jacobi operational matrix: an application for solving fractional differential equations. Appl Math Model 36:4931–4943

    Article  MathSciNet  MATH  Google Scholar 

  39. Yousefi SA, Behroozifar M (2010) Operational matrices of Bernstein polynomials and their applications. Int J Syst Sci 32:709–716

    Article  MathSciNet  MATH  Google Scholar 

  40. Labecca W, Guimaraes O, Piqueira JRC (2014) Dirac’s formalism combined with complex Fourier operational matrices to solve initial and boundary value problems. Commun Nonlinear Sci Numer Simul 19(8):2614–2623

    Article  MathSciNet  MATH  Google Scholar 

  41. Razzaghi M, Yousefi S (2005) Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations. Math. Comput. Simul. 70:1–8

    Article  MathSciNet  MATH  Google Scholar 

  42. Danfu H, Xufeng S (2007) Numerical solution of integro-differential equations by using CAS wavelet operational matrix of integratio. Appl Math Comput 194:460–466

    MathSciNet  MATH  Google Scholar 

  43. Behiry SH (2014) Solution of nonlinear Fredholm integro-differential equations using a hybrid of block pulse functions and normalized Bernstein polynomials. J Comput Appl Math 260:258–265

    Article  MathSciNet  MATH  Google Scholar 

  44. Saadatmandi A, Dehghan M (2010) A new operational matrix for solving fractional-order differential equations. Comput Math Appl 59:1326–1336

    Article  MathSciNet  MATH  Google Scholar 

  45. Saadatmandi A (2014) Bernstein operational matrix of fractional derivatives and its applications. Appl Math Model 38:1365–1372

    Article  MathSciNet  MATH  Google Scholar 

  46. Atabakzadeh MH, Akrami MH, Erjaee GH (2013) Chebyshev operational matrix method for solving multi-order fractional ordinary differential equations. Appl Math Model 37:8903–8911

    Article  MathSciNet  MATH  Google Scholar 

  47. Bhrawy AH, Alofi AS (2013) The operational matrix of fractional integration for shifted Chebyshev polynomials. Appl Math Lett 26:25–31

    Article  MathSciNet  MATH  Google Scholar 

  48. Oliveira (1980) Collocation and residual correction. Numer Math 6:27–31

    Article  MathSciNet  MATH  Google Scholar 

  49. Shahmorad S (2005) Numerical solution of the general form linear Fredholm-Volterra integrodifferential equations by the Tau method with an error estimation. Appl Math Comput 167:1418–1429

    MathSciNet  MATH  Google Scholar 

  50. de Villiers J (2012) Mathematics of Approximation. Atlantis Press, New York

    Book  MATH  Google Scholar 

  51. Yöuzbasi S (2012) An efficient algorithm for solving multi-pantograph equation systems. Comput Math Appl 64(4):589–603

    Article  MathSciNet  Google Scholar 

  52. Zlatev Z, Faragó I, Havasi Á (2012) Richardson extrapolation combined with the sequential splitting procedure and \(\theta -\)method. Central Eur J Math 10(1):159–172

    Article  MathSciNet  MATH  Google Scholar 

  53. Dehghan M, Manafian J, Saadatmandi A (2010) Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer Methods Partial Diff Equ 26(2):448–479

    Article  MathSciNet  MATH  Google Scholar 

  54. Lakestani M, Dehghan M, Irandoust-pakchin S (2012) The construction of operational matrix of fractional derivatives using Bspline functions. Commun Nonlinear Sci Numer Simul 17(3):1149–1162

    Article  MathSciNet  MATH  Google Scholar 

  55. Abbaszadeh M, Dehghan M (2019) Numerical and analytical investigations for neutral delay fractional damped diffusion-wave equation based on the stabilized interpolating element free Galerkin (IEFG) method. Appl Numer Math 145:488–506

    Article  MathSciNet  MATH  Google Scholar 

  56. Eslahchi MR, Dehghan M (2011) Application of Taylor series in obtaining the orthogonal operational matrix. Comput Math Appl 61(9):2596–2604

    Article  MathSciNet  MATH  Google Scholar 

  57. Kayedi-Bardeh A, Eslahchi MR, Dehghan M (2014) A method for obtaining the operational matrix of the fractional Jacobi functions and applications. J Vib Control 20(5):736–748

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to two anonymous reviewers for their helpful comments, which undoubtedly led to the definite improvements in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Shivanian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodabandehlo, H.R., Shivanian, E. & Abbasbandy, S. Numerical solution of nonlinear delay differential equations of fractional variable-order using a novel shifted Jacobi operational matrix. Engineering with Computers 38 (Suppl 3), 2593–2607 (2022). https://doi.org/10.1007/s00366-021-01422-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01422-7

Keywords

Mathematics subject classifications

Navigation