Skip to main content
Log in

Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Optimizing real-life engineering design problems are challenging and somewhat difficult if optimum solutions are expected. The development of new efficient optimization algorithms is crucial for this task. In this paper, a recently invented grasshopper optimization algorithm is upgraded from its original version. The method is improved by adding an elite opposition-based learning methodology to an elite opposition-based learning grasshopper optimization algorithm. The new optimizer, which is elite opposition-based learning grasshopper optimization method (EOBL-GOA), is validated with several engineering design probles such as a welded beam design problem, car side crash problem, multiple clutch disc problem, hydrostatic thrust bearing problem, three-bar truss, and cantilever beam problem, and finally used for the optimization of a suspension arm of the vehicles. The optimum results reveal that the EOBL-GOA is among the best algorithms reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  2. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  3. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27:495–513. https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  4. Mirjalili S, Gandomi AH, Mirjalili SZ et al (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  5. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  6. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci (Ny) 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  7. Coello Coello CA (2000) Constraint-handling using an evolutionary multiobjective optimization technique. Civ Eng Environ Syst 17:319–346. https://doi.org/10.1080/02630250008970288

    Article  Google Scholar 

  8. Siddall JN (1972) Analytical decision-making in engineering design. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  9. Ragsdell KM, Phillips DT (1976) Optimal design of a class of welded structures using geometric programming. J Eng Ind 98:1021–1025. https://doi.org/10.1115/1.3438995

    Article  Google Scholar 

  10. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213:267–289. https://doi.org/10.1007/s00707-009-0270-4

    Article  MATH  Google Scholar 

  11. Formato RA (2015) Central force optimization richard A. Formato 12:1–21

    Google Scholar 

  12. Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci (Ny) 222:175–184. https://doi.org/10.1016/j.ins.2012.08.023

    Article  MathSciNet  Google Scholar 

  13. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112–113:283–294. https://doi.org/10.1016/j.compstruc.2012.09.003

    Article  Google Scholar 

  14. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27:1053–1073. https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  15. Mirjalili S (2015) Moth-flame optimization algorithm : a novel nature-inspired heuristic paradigm. Knowledge-Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  16. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  17. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowledge-Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  18. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166. https://doi.org/10.1016/j.compstruc.2012.07.010

    Article  Google Scholar 

  19. Yildiz AR (2019) A novel hybrid whale–Nelder–Mead algorithm for optimization of design and manufacturing problems. Int J Adv Manuf Technol 105:5091–5104. https://doi.org/10.1007/s00170-019-04532-1

    Article  Google Scholar 

  20. Özkaya H, Yildiz M, Yildiz AR et al (2020) The equilibrium optimization algorithm and the response surface-based metamodel for optimal structural design of vehicle components. Mater Test 62:492–496. https://doi.org/10.3139/120.111509

    Article  Google Scholar 

  21. Yildiz BS, Yildiz AR, Albak Eİ et al (2020) Butterfly optimization algorithm for optimum shape design of automobile suspension components. Mater Test 62:365–370. https://doi.org/10.3139/120.111492

    Article  Google Scholar 

  22. Baykasoglu A (2012) Design optimization with chaos embedded great deluge algorithm. Appl Soft Comput 12:1055–1067. https://doi.org/10.1016/j.asoc.2011.11.018

    Article  Google Scholar 

  23. Ewees AA, Abd Elaziz M, Houssein EH (2018) Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst Appl 112:156–172. https://doi.org/10.1016/j.eswa.2018.06.023

    Article  Google Scholar 

  24. Hamza F, Abderazek H, Lakhdar S et al (2018) Optimum design of cam-roller follower mechanism using a new evolutionary algorithm. Int J Adv Manuf Technol 99:1267–1282. https://doi.org/10.1007/s00170-018-2543-3

    Article  Google Scholar 

  25. Abderazek H, Yildiz AR, Mirjalili S (2020) Comparison of recent optimization algorithms for design optimization of a cam-follower mechanism. Knowl-Based Syst 191:105237. https://doi.org/10.1016/j.knosys.2019.105237

    Article  Google Scholar 

  26. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Des 43:303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  27. Gu L, Yang RJ, Tho CH et al (2001) Optimisation and robustness for crashworthiness of side impact. Int J Veh Des 26:348. https://doi.org/10.1504/IJVD.2001.005210

    Article  Google Scholar 

  28. Gandomi AH, Yang X-S, Alavi AH (2013) Erratum to: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:245–245. https://doi.org/10.1007/s00366-012-0308-4

    Article  Google Scholar 

  29. Savsani P, Savsani V (2016) Passing vehicle search (PVS): A novel metaheuristic algorithm. Appl Math Model 40:3951–3978. https://doi.org/10.1016/j.apm.2015.10.040

    Article  Google Scholar 

  30. Mohamed AW (2018) A novel differential evolution algorithm for solving constrained engineering optimization problems. J Intell Manuf 29:659–692. https://doi.org/10.1007/s10845-017-1294-6

    Article  Google Scholar 

  31. Zhao W, Zhang Z, Wang L (2020) Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications. Eng Appl Artif Intell 87:103300. https://doi.org/10.1016/j.engappai.2019.103300

    Article  Google Scholar 

  32. He S, Prempain E, Wu QH (2004) An improved particle swarm optimizer for mechanical design optimization problems. Eng Optim 36:585–605. https://doi.org/10.1080/03052150410001704854

    Article  MathSciNet  Google Scholar 

  33. Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35. https://doi.org/10.1007/s00366-011-0241-y

    Article  Google Scholar 

  34. Heidari AA, Mirjalili S, Faris H et al (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  35. Yildiz AR, Yildiz BS, Sait SM et al (2019) A new hybrid Harris hawks-Nelder-Mead optimization algorithm for solving design and manufacturing problems. Mater Test 61:735–743. https://doi.org/10.3139/120.111378

    Article  Google Scholar 

  36. Zhou Y, Wang R, Luo Q (2016) Elite opposition-based flower pollination algorithm. Neurocomputing 188:294–310. https://doi.org/10.1016/j.neucom.2015.01.110

    Article  Google Scholar 

  37. Xu Z, Hu Z, Heidari AA et al (2020) Orthogonally-designed adapted grasshopper optimization: a comprehensive analysis. Expert Syst Appl 150:113282. https://doi.org/10.1016/j.eswa.2020.113282

    Article  Google Scholar 

  38. Luo J, Chen H, Zhang Q et al (2018) An improved grasshopper optimization algorithm with application to financial stress prediction. Appl Math Model 64:654–668. https://doi.org/10.1016/j.apm.2018.07.044

    Article  MathSciNet  MATH  Google Scholar 

  39. SANDGREN, E. (1988) Nonlinear integer and discrete programming in mechanical design. Proceeding ASME Des Technol Conf 95–105

  40. Azizyan G, Miarnaeimi F, Rashki M, Shabakhty N (2019) Flying squirrel optimizer (FSO): a novel SI-based optimization algorithm for engineering problems. Iran J Optim 11:177–205

    Google Scholar 

  41. Yildiz BS, Patel V, Pholdee N, Sait SM, Bureerat S, Yildiz AR (2021) Conceptual comparison of the ecogeography-based algorithm, equilibrium algorithm, marine predators algorithm and slime mold algorithm for optimal product design. Mater Test 63:4. https://doi.org/10.1515/mt-2020-0049

    Article  Google Scholar 

  42. Yildiz BS, Pholdee N, Bureerat S et al (2021) Robust design of a robot gripper mechanism using new hybrid grasshopper optimization algorithm. Expert Syst 38:654–668. https://doi.org/10.1111/exsy.12666

    Article  Google Scholar 

  43. Meng Z, Li G, Wang X et al (2021) A Comparative study of metaheuristic algorithms for reliability-based design optimization problems. Arch Comput Methods Eng 28:1853–1869. https://doi.org/10.1007/s11831-020-09443-z

    Article  MathSciNet  Google Scholar 

  44. Yildiz AR, Erdaş MU (2021) A new Hybrid Taguchi-salp swarm optimization algorithm for the robust design of real-world engineering problems. Mater Test 63:157–162. https://doi.org/10.1515/mt-2020-0022

    Article  Google Scholar 

  45. Abderazek H, Hamza F, Yildiz AR, Sait SM (2021) Comparative investigation of the moth-flame algorithm and whale optimization algorithm for optimal spur gear design. Mater Test 63:266–271. https://doi.org/10.1515/mt-2020-0039

    Article  Google Scholar 

  46. Yildiz BS, Pholdee N, Bureerat S, Yildiz AR, Sait SM (2021) Comparision of the political optimization algorithm, the Archimedes optimization algorithm and the Levy flight algorithm for design optimization in industry. Mater Test 63:4. https://doi.org/10.1515/mt-2020-0053

    Article  Google Scholar 

  47. Yildiz BS (2020) The spotted hyena optimization algorithm for weight-reduction of automobile brake components. Mater Test 62:383–388. https://doi.org/10.3139/120.111495

    Article  Google Scholar 

  48. Panagant N, Pholdee N, Bureerat S et al (2020) Seagull optimization algorithm for solving real-world design optimization problems. Mater Test 62:640–644. https://doi.org/10.3139/120.111529

    Article  Google Scholar 

  49. Yildiz ABS, Pholdee N, Bureerat S et al (2020) Sine-cosine optimization algorithm for the conceptual design of automobile components. Mater Test 62:744–748. https://doi.org/10.3139/120.111541

    Article  Google Scholar 

  50. Karaduman A, Yildiz BS, Yildiz AR (2019) Experimental and numerical fatigue-based design optimisation of clutch diaphragm spring in the automotive industry. Int J Veh Des 80:330. https://doi.org/10.1504/IJVD.2019.109875

    Article  Google Scholar 

  51. Yildiz BS, Yildiz AR, Pholdee N et al (2020) The Henry gas solubility optimization algorithm for optimum structural design of automobile brake components. Mater Test 62:261–264. https://doi.org/10.3139/120.111479

    Article  Google Scholar 

  52. Abderazek H, Sait SM, Yildiz AR (2019) Optimal design of planetary gear train for automotive transmissions using advanced meta-heuristics. Int J Veh Des 80:121. https://doi.org/10.1504/IJVD.2019.109862

    Article  Google Scholar 

  53. Abderazek H, Yildiz AR, Sait SM (2019) Mechanical engineering design optimisation using novel adaptive differential evolution algorithm. Int J Veh Des 80:285. https://doi.org/10.1504/IJVD.2019.109873

    Article  Google Scholar 

  54. Panagant N, Pholdee N, Wansasueb K et al (2019) Comparison of recent algorithms for many-objective optimisation of an automotive floor-frame. Int J Veh Des 80:176. https://doi.org/10.1504/IJVD.2019.109863

    Article  Google Scholar 

  55. Sarangkum R, Wansasueb K, Panagant N et al (2019) Automated design of aircraft fuselage stiffeners using multiobjective evolutionary optimisation. Int J Veh Des 80:162. https://doi.org/10.1504/IJVD.2019.109864

    Article  Google Scholar 

  56. Aye CM, Pholdee N, Yildiz AR et al (2019) Multi-surrogate-assisted metaheuristics for crashworthiness optimisation. Int J Veh Des 80:223. https://doi.org/10.1504/IJVD.2019.109866

    Article  Google Scholar 

  57. Albak EI, Solmaz E, Yildiz AR, Öztürk F (2021) Multiobjective crashworthiness optimization of graphene type multi-cell tubes under various loading conditions. J Brazilian Soc Mech Sci Eng 43:266. https://doi.org/10.1007/s40430-021-02979-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betül Sultan Yildiz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, B.S., Pholdee, N., Bureerat, S. et al. Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems. Engineering with Computers 38, 4207–4219 (2022). https://doi.org/10.1007/s00366-021-01368-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01368-w

Keywords

Navigation