Skip to main content
Log in

2D Mesh smoothing based on Markov chain method

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The mesh quality is of vital importance to obtain the numerical results precisely. Poorly shaped or distorted elements can be produced by automatic mesh generation tools. In this article, the mesh smoothing algorithm based on the Markov chain Monte Carlo method is proposed to improve the quality of the mesh. The movement of nodes position is converted to a stochastic process to seek the best position for the element quality. Compared with the widely known Laplacian smoothing and optimization-based smoothing techniques, the mesh quality by the proposed method is found better than these methods. Examples are performed to illustrate the applicability of the approach. The numerical results show that the proposed algorithm is effective and valuable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Vartziotis D, Wipper J, Papadrakakis M (2013) Improving mesh quality and finite element solution accuracy by GETMe smoothing in solving the Poisson equation. Finite Elem Anal Des 66:36–52

    Article  MathSciNet  Google Scholar 

  2. Xu H, Newman TS (2006) An angle-based optimization approach for 2D finite element mesh smoothing. Finite Elem Anal Des 42:1150–1164

    Article  MathSciNet  Google Scholar 

  3. Freitag LA, Ollivier-Gooch C (1997) Tetrahedral mesh improvement using swapping and smoothing. Int J Numer Meth Eng 40:3979–4002

    Article  MathSciNet  Google Scholar 

  4. He Z, Zhang G, Deng L, Li E, Liu G (2015) Topology optimization using node-based smoothed finite element method. Int J Appl Mech 7:1550085

    Article  Google Scholar 

  5. Parthasarathy V, Kodiyalam S (1991) A constrained optimization approach to finite element mesh smoothing. Finite Elem Anal Des 9:309–320

    Article  Google Scholar 

  6. Ohtake Y, Belyaev A, Bogaevski I (2001) Mesh regularization and adaptive smoothing. Comput Aided Des 33:789–800

    Article  Google Scholar 

  7. Durand R, Pantoja-Rosero BG, Oliveira V (2019) A general mesh smoothing method for finite elements. Finite Elem Anal Des 158:17–30

    Article  MathSciNet  Google Scholar 

  8. Aubry R, Dey S, Karamete K, Mestreau E (2016) Smooth anisotropic sources with application to three-dimensional surface mesh generation. Eng Comput 32:313–330

    Article  Google Scholar 

  9. El Ouafdi AF, El Houari H, Ziou D (2015) Anisotropic adaptive method for triangular meshes smoothing. IET Image Proc 9:516–526

    Article  Google Scholar 

  10. Ruiz-Girones E, Roca X, Sarrate J, Montenegro R, Escobar JM (2015) Simultaneous untangling and smoothing of quadrilateral and hexahedral meshes using an object-oriented framework. Adv Eng Softw 80:12–24

    Article  Google Scholar 

  11. Field DA (1988) Laplacian smoothing and Delaunay triangulations. Commun Appl Numer Methods 4:709–712

    Article  Google Scholar 

  12. Vartziotis D, Papadrakakis M (2017) Improved GETMe by adaptive mesh smoothing. Comput Assisted Methods Eng Sci 20:55–71

    Google Scholar 

  13. Vartziotis D, Bohnet D, Himpel B (2018) GETOpt mesh smoothing: putting GETMe in the framework of global optimization-based schemes. Finite Elem Anal Des 147:10–20

    Article  MathSciNet  Google Scholar 

  14. Dassi F, Kamenski L, Farrell P, Si H (2018) Tetrahedral mesh improvement using moving mesh smoothing, lazy searching flips, and RBF surface reconstruction. Comput Aided Des 103:2–13

    Article  MathSciNet  Google Scholar 

  15. Lee EK, Shin M, Kim J (2018) Improved simultaneous mesh untangling and quality improvement methods of 2D triangular meshes. Int J Comput Methods. https://doi.org/10.1142/S0219876218501190

    Article  MATH  Google Scholar 

  16. Freitag LA (1997) On combining Laplacian and optimization-based mesh smoothing techniques. ASME Appl Mech Division Publ AMD 220:37–44

    Google Scholar 

  17. Hansbo P (1995) Generalized Laplacian smoothing of unstructured grids. Commun Numer Methods Eng 11:455–464

    Article  Google Scholar 

  18. Ji Z, Liu L, Wang G (2005) A global laplacian smoothing approach with feature preservation. In: Ninth international conference on computer aided design and computer graphics (CAD-CG’05). IEEE, p 6

  19. Mittal K, Fischer P (2018) Mesh smoothing for the spectral element method. J Sci Comput 78(2):1152–1173

    Article  MathSciNet  Google Scholar 

  20. Freitag LA, Plassmann P (2000) Local optimization-based simplicial mesh untangling and improvement. Int J Numer Meth Eng 49:109–125

    Article  Google Scholar 

  21. Freitag LA, Knupp PM (2002) Tetrahedral mesh improvement via optimization of the element condition number. Int J Numer Meth Eng 53:1377–1391

    Article  MathSciNet  Google Scholar 

  22. Dai C, Liu HL, Dong L (2014) A comparison of objective functions of optimization-based smoothing algorithm for tetrahedral mesh improvement. J Theor Appl Mech 52:151–163

    Google Scholar 

  23. Karman SL (2016) Adaptive optimization-based improvement of tetrahedral meshes. AIAA J 54:1578–1590

    Article  Google Scholar 

  24. D’Elia M, Ridzal D, Peterson KJ, Bochev P, Shashkov M (2016) Optimization-based mesh correction with volume and convexity constraints. J Comput Phys 313:455–477

    Article  MathSciNet  Google Scholar 

  25. Freitag LA (1997) On combining laplacian and optimization-based mesh smoothing techniques. In: Symposium on Joint ASME, ASCE

  26. Fabritius B, Tabor G (2016) Improving the quality of finite volume meshes through genetic optimisation. Eng Comput 32:425–440

    Article  Google Scholar 

  27. Peng W, Lu DT, Huang T, Wang L (2015) Hexahedral mesh smoothing via local element regularization and global mesh optimization. Comput Aided Des 59:85–97

    Article  Google Scholar 

  28. Lin TJ, Guan ZQ, Chang JH, Lo SH (2014) Vertex-ball spring smoothing: an efficient method for unstructured dynamic hybrid meshes. Comput Struct 136:24–33

    Article  Google Scholar 

  29. Knupp P (2012) Introducing the target-matrix paradigm for mesh optimization via node-movement. Eng Comput 28:419–429

    Article  Google Scholar 

  30. Park J, Shontz SM (2010) Two derivative-free optimization algorithms for mesh quality improvement. Proc Comput Sci 1:387–396

    Article  Google Scholar 

  31. Walton S, Hassan O, Morgan K (2013) Reduced order mesh optimisation using proper orthogonal decomposition and a modified cuckoo search. Int J Numer Meth Eng 93:527–550

    Article  MathSciNet  Google Scholar 

  32. Kim J, Shin M, Kang W (2015) A derivative-free mesh optimization algorithm for mesh quality improvement and untangling. Math Probl Eng 2015:1–10

    MathSciNet  MATH  Google Scholar 

  33. Knupp PM (2001) Algebraic mesh quality metrics. SIAM J Sci Comput 23:193–218

    Article  MathSciNet  Google Scholar 

  34. Knupp PM (2003) Algebraic mesh quality metrics for unstructured initial meshes. Finite Elem Anal Des 39:217–241

    Article  Google Scholar 

  35. Branets L, Carey GF (2005) A local cell quality metric and variational grid smoothing algorithm. Eng Comput 21:19–28

    Article  Google Scholar 

  36. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: International symposium on neural networks, p 1942–1948

  37. Matlab (2014) Matlab help document. The MathWorks, Inc., Natick

    Google Scholar 

Download references

Acknowledgements

This work has been supported by Natural Science Foundation of Shaanxi Province (2019JQ-470), National Key R&D Program of China under Project (Grant No. 2017YFB0203602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Zhang, D., Ren, H. et al. 2D Mesh smoothing based on Markov chain method. Engineering with Computers 36, 1615–1626 (2020). https://doi.org/10.1007/s00366-019-00786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00786-1

Keywords

Navigation