Skip to main content
Log in

4D space–time Delaunay meshing for medical images

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, we present a Delaunay refinement algorithm for 4-dimensional (\(\hbox {3D}+t\)) segmented images. The output mesh is proved to consist of sliver-free simplices. Assuming that the hyper-surface is a closed smooth manifold, we also guarantee faithful geometric and topological approximation. We implement and demonstrate the effectiveness of our method on publicly available segmented cardiac images. Finally, we devise a tightly coupled parallelization technique to boost the performance of our 4-dimensional mesher, thereby taking advantage of the multi-core and many-core platforms already available in the market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. CGAL, Computational geometry algorithms library. http://www.cgal.org, v4.0

  2. ITK, Insight segmentation and registration toolkit. http://www.itk.org, v4.1.0

  3. Amenta N, Bern M (1998) Surface reconstruction by Voronoi filtering. In: Proceedings of the fourteenth annual symposium on computational geometry, SCG ’98. ACM, New York, pp 39–48

  4. Amenta Nina, Choi Sunghee, Dey Tamal K (2002) A simple algorithm for homeomorphic surface reconstruction. Int J Comput Geom Appl 12(1–2):125–141

    Article  MATH  MathSciNet  Google Scholar 

  5. Amenta N, Choi S, Kolluri RK (2001) The power crust. In: Proceedings of the sixth ACM symposium on solid modeling and applications, SMA ’01. ACM, New York, pp 249–266

  6. Antonopoulos C, Blagojevic F, Chernikov A, Chrisochoides N, Nikolopoulos D (2009) A multigrain Delaunay mesh generation method for multicore SMT-based architectures. J Parallel Distrib Comput 69:589–600

    Article  Google Scholar 

  7. Attali D, Edelsbrunner H, Mileyko Y (2007) Weak witnesses for Delaunay triangulations of submanifolds. In: Proceedings of the 2007 ACM symposium on solid and physical modeling, SPM ’07. ACM, New York, pp 143–150

  8. Behr M (2008) Simplex space-time meshes in finite element simulations. Int J Numer Methods Fluids 57:1421–1434

    Article  MATH  MathSciNet  Google Scholar 

  9. Blumofe RD, Joerg CF, Kuszmaul BC, Leiserson CE, Randall KH, Zhou Y (1995) Cilk: an efficient multithreaded runtime system. In: Proceedings of the fifth ACM SIGPLAN symposium on principles and practice of parallel programming, PPoPP ’95. ACM, New York, pp 207–216

  10. Boissonnat J-D, Guibas LJ, Oudot SY (2009) Manifold reconstruction in arbitrary dimensions using witness complexes. Discret Comput Geom 42:37–70

    Article  MATH  MathSciNet  Google Scholar 

  11. Boissonnat Jean-Daniel, Oudot Steve (2005) Provably good sampling and meshing of surfaces. Graph Models 67(5):405–451

    Article  MATH  Google Scholar 

  12. Boltcheva D, Yvinec M, Boissonnat J-D (2009) Mesh generation from 3D multi-material images. In: Medical image computing and computer-assisted intervention. Springer, Berlin, pp 283–290

  13. Bowyer A (1981) Computing Dirichlet tesselations. Comput J 24:162–166

    Article  MathSciNet  Google Scholar 

  14. Cazals F, Giesen J (2006) Delaunay triangulation based surface reconstruction: ideas and algorithms. In: Effective computational geometry for curves and surfaces. Springer, Berlin, pp 231–273

  15. Cheng S-W, Dey TK, Edelsbrunner H, Facello MA, Teng S-H (2000) Sliver exudation. J ACM 47(5):883–904

    Article  MathSciNet  Google Scholar 

  16. Cheng S-W, Dey TK, Ramos EA (2005) Manifold reconstruction from point samples. In: Proceedings of the sixteenth annual ACM-SIAM symposium on discrete algorithms, SODA ’05. Society for Industrial and Applied Mathematics, Philadelphia, pp 1018–1027

  17. Cheng S-W, Dey TK, Ramos EA (2007) Delaunay refinement for piecewise smooth complexes. In: Proceedings of the 18th annual ACM-SIAM symposium on discrete algorithms. ACM Press, New York, pp 1096–1105

  18. Chernikov A, Chrisochoides N (2008) Algorithm 872: parallel 2D constrained Delaunay mesh generation. ACM Trans Math Softw 34:6–25

    Article  MathSciNet  Google Scholar 

  19. Chernikov A, Chrisochoides N (2011) Multitissue tetrahedral image-to-mesh conversion with guaranteed quality and fidelity. SIAM J Sci Comput 33:3491–3508

    Article  MATH  MathSciNet  Google Scholar 

  20. Chernikov A, Chrisochoides N (2012) Generalized insertion region guides for Delaunay mesh refinement. SIAM J Sci Comput 34(3):A1333–A1350

    Article  MATH  MathSciNet  Google Scholar 

  21. Chernikov AN, Chrisochoides NP (2005) Three-dimensional Delaunay refinement for multi-core processors. In: Proceedings of the 22nd annual international conference on supercomputing, ICS ’08. ACM, New York, pp 214–224

  22. Cockburn B, Karniadakis GE, Shu C-W (2000) Discontinuous galerkin methods: theory, computation and applications. Lecture notes in computational science and engineering, vol 11

  23. Coeurjolly D, Montanvert A (2007) Optimal separable algorithms to compute the reverse Euclidean distance transformation and discrete medial axis in arbitrary dimension. IEEE Trans Pattern Anal Mach Intell 29:437–448

    Article  Google Scholar 

  24. Culler D, Karp R, Patterson D, Sahay A, Schauser KE, Santos E, Subramonian R, von Eicken T (1993) Logp: towards a realistic model of parallel computation. SIGPLAN Not 28(7):1–12

    Article  Google Scholar 

  25. Danielsson PE (1980) Euclidean distance mapping. Comput Graph Image Process 14:227–248

    Article  Google Scholar 

  26. Devillers O, Teillaud M (2003) Perturbations and vertex removal in a 3D Delaunay triangulation. In: Proceedings of the 14th ACM-SIAM symposium on discrete algorithms, SODA ’03. SIAM, pp 313–319

  27. Dey TK, Zhao W (2004) Approximate medial axis as a voronoi subcomplex. Comput Aided Des 36(2):195–202

    Article  Google Scholar 

  28. Edelsbrunner H, Shah NR (1994) Triangulating topological spaces. In: Proceedings of the tenth annual symposium on computational geometry, SCG ’94. ACM, New York, pp 285–292

  29. Erickson J, Guoy D, Sullivan JM, Üngör A (2005) Building spacetime meshes over arbitrary spatial domains. Eng Comput 20(4):342–353

    Article  Google Scholar 

  30. Foteinos P, Chrisochoides N (2012) Dynamic parallel 3D Delaunay triangulation. In: International meshing roundtable, Paris, France. Springer, Berlin, pp 3–20

  31. Foteinos P, Chrisochoides N (2013) High quality real-time image-to-mesh conversion for finite element simulations. In: Proceedings of the 27th international ACM conference on international conference on supercomputing, ICS ’13. ACM, New York, pp 233–242

  32. Foteinos PA, Chrisochoides NP (2014) High quality real-time image-to-mesh conversion for finite element simulations. J Parallel Distrib Comput 74(2):2123–2140

    Article  Google Scholar 

  33. Giblin P, Kimia BB (2004) A formal classification of 3D medial axis points and their local geometry. IEEE Trans Pattern Anal Mach Intell 26:238–251

    Article  Google Scholar 

  34. Hudson B, Miller G, Phillips T (2006) Sparse voronoi refinement. In: Proceedings of the 15th international meshing roundtable. Springer, Berlin, pp 339–356

  35. Jiao X, Colombi A, Ni X, Hart J (2010) Anisotropic mesh adaptation for evolving triangulated surfaces. Eng Comput 26(4):363–376

    Article  Google Scholar 

  36. Labelle F, Shewchuk JR (2007) Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. ACM Trans Graph 26(3):57.1–57.10

    Article  Google Scholar 

  37. Li X-Y (2001) Generating well-shaped D-dimensional Delaunay meshes. In: Wang J (ed) Computing and combinatorics. Lecture notes in computer science, vol 2108. Springer, Berlin, pp 91–100

  38. Linardakis L, Chrisochoides N (2008) Graded Delaunay decoupling method for parallel guaranteed quality planar mesh generation. SIAM J Sci Comput 30(4):1875–1891

    Article  MathSciNet  Google Scholar 

  39. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput Graph 21(4):163–169

    Article  Google Scholar 

  40. Maurer CR, Rensheng Q, Raghavan V (2003) A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans Pattern Anal Mach Intell 25(2):265–270

    Article  Google Scholar 

  41. Miller GL, Talmor D, Teng S-H, Walkington N (1995) A Delaunay based numerical method for three dimensions: generation, formulation, and partition. In: Proceedings of the 27th annual ACM symposium on theory of computing. ACM, New York, pp 683–692

  42. Mitchell SA, Vavasis SA (2000) Quality mesh generation in higher dimensions. SIAM J Comput 29(4):1334–1370

    Article  MATH  MathSciNet  Google Scholar 

  43. Najman L, Cousty J, Couprie M, Talbot H, Clment-Guinaudeau S, Goissen T, Garot J, An open, clinically-validated database of 3D+t cine-mr images of the left ventricle with associated manual and automated segmentation. http://www.laurentnajman.org/heart/index.html

  44. Nave D, Chrisochoides N, Chew P (2004) Parallel Delaunay refinement for restricted polyhedral domains. Comput Geom Theory Appl 28:191–215

    Article  MATH  MathSciNet  Google Scholar 

  45. Neumüller M, Steinbach O (2011) Refinement of flexible spacetime finite element meshes and discontinuous Galerkin methods. Comput Vis Sci 14:189–205

    Article  MathSciNet  Google Scholar 

  46. Oudot S, Rineau L, Yvinec M (2005) Meshing volumes bounded by smooth surfaces. In: Proceedings of the international meshing roundtable. Springer, Berlin, pp 203–219

  47. Pons J-P, Ségonne F, Boissonnat J-D, Rineau L, Yvinec M, Keriven R (2007) High-quality consistent meshing of multi-label datasets. In: Information processing in medical imaging. Springer, Berlin, pp 198–210

  48. Rabinowitz S (1989) The volume of an n-simplex with many equal edges. Mo J Math Sci 11–17

  49. Rineau L, Yvinec M (2007) Meshing 3D domains bounded by piecewise smooth surfaces. In: Proceedings of the international meshing roundtable, pp 443–460

  50. Shewchuk JR (1998) Tetrahedral mesh generation by Delaunay refinement. In: Proceedings of the 14th ACM symposium on computational geometry. ACM, Minneapolis, pp 86–95

  51. Shewchuk JR (2002) Delaunay refinement algorithms for triangular mesh generation. Comput Geom Theory Appl 22(1–3):21–74

    Article  MATH  MathSciNet  Google Scholar 

  52. Si H (2010) Constrained Delaunay tetrahedral mesh generation and refinement. Finite Elem Anal Des 46:33–46

    Article  MathSciNet  Google Scholar 

  53. Si H, TetGen, a quality tetrahedral mesh generator and a 3D Delaunay triangulator. http://tetgen.berlios.de/, v1.4.3

  54. Thite S (2004) Efficient spacetime meshing with nonlocal cone constraints. In: 13th international meshing roundtable, pp 47–58

  55. Tsin Y, Kirchberg K, Lauritsch G, Chenyang X (2009) A deformation tracking approach to 4d coronary artery tree reconstruction. In: Yang G-Z, Hawkes D, Rueckert D, Noble A, Taylor C (eds) Medical image computing and computer-assisted intervention, MICCAI 2009. Lecture notes in computer science, vol 5762. Springer, Berlin, pp 68–75

  56. von Siebenthal M, Székely G, Gamper U, Boesiger P, Lomax A, Cattin P (2007) 4D MR imaging of respiratory organ motion and its variability. Phys Med Biol 52(6):1547–1564

  57. Watson DF (1981) Computing the n-dimensional Delaunay tesselation with application to Voronoi polytopes. Comput J 24:167–172

    Article  MathSciNet  Google Scholar 

  58. Weigang E, Kari FA, Beyersdorf F, Luehr M, Etz CD, Frydrychowicz A, Harloff A, Markl M (2008) Flow-sensitive four-dimensional magnetic resonance imaging: flow patterns in ascending aortic aneurysms. Eur J Cardio Thorac Surg 34(1):11–16

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Marek Behr, RWTH Aachen University, for the constructive discussions, and the anonymous reviewers for their comments and insight that helped the presentation of this paper. This work is supported in part by NSF grants: CCF-1139864, CCF-1136538, CSI-1136536 and CCF-1439079 and by the John Simon Guggenheim Foundation and the Richard T. Cheng Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Foteinos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foteinos, P., Chrisochoides, N. 4D space–time Delaunay meshing for medical images. Engineering with Computers 31, 499–511 (2015). https://doi.org/10.1007/s00366-014-0380-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-014-0380-z

Keywords

Navigation