Skip to main content
Log in

Anisotropic mesh adaptation for evolving triangulated surfaces

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Dynamic surfaces arise in many applications, such as free surfaces in multiphase flows and moving interfaces in fluid–solid interaction. In many engineering applications, an explicit surface triangulation is often used to represent dynamic surfaces, posing significant challenges in adapting their meshes, especially if large curvatures and sharp features may dynamically emerge or vanish as the surfaces evolve. In this paper, we present an anisotropic mesh adaptation technique to meet these challenges. Our technique strives for optimal aspect ratios of the triangulation to reduce positional errors and to capture geometric features of dynamic surfaces based on a novel extension of the quadrics. Our adaptation algorithm combines the operations of vertex redistribution, edge flipping, edge contraction, and edge splitting. Experimental results demonstrate the effectiveness of our anisotropic adaptation technique for static and dynamic surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Springer, Berlin

    MATH  Google Scholar 

  2. Sethian JA (1999) Level set methods and fast marching methods. Cambridge University Press, London

    MATH  Google Scholar 

  3. Jiao X (2007) Face offsetting: a unified approach for explicit moving interfaces. J Comput Phys 220:612–625

    Article  MATH  MathSciNet  Google Scholar 

  4. Simpson RB (1994) Anisotropic mesh transformations and optimal error control. Appl Numer Math 14:183–198

    Article  MATH  MathSciNet  Google Scholar 

  5. D’Azevedo E (1991) Optimal triangular mesh generation by coordinate transformation. SIAM J Sci Stat Comput 12:755–786

    Article  MATH  MathSciNet  Google Scholar 

  6. Rippa S (1992) Long and thin triangles can be good for linear interpolation. SIAM J Numer Anal 29:257–270

    Article  MATH  MathSciNet  Google Scholar 

  7. Shewchuk JR (2002) What is a good linear element? interpolation, conditioning, and quality measures. In: Proceedings of the 11th international meshing roundtable, pp 115–126

  8. Heckbert PS, Garland M (1999) Optimal triangulation and quadric-based surface simplification. Comput Geom 14:49–65

    Article  MATH  MathSciNet  Google Scholar 

  9. Jiao X, Colombi A, Ni X, Hart J (2006) Anisotropic mesh adaptation for evolving triangulated surfaces. In: Proceedings of the 15th international meshing roundtable, pp 173–190

  10. Habashi WG, Dompierre J, Bourgault Y, Ait-Ali-Yahia D, Fortin M, Vallet M-G (2000) Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part I: general principles. Int J Numer Methods Fluids 32:725–744

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen L, Sun P, Xu J (2007) Optimal anisotropic meshes for minimizing interpolation errors in L p-norm. Math Comput 76:179–204

    Article  MATH  MathSciNet  Google Scholar 

  12. Peraire J, Vahdati M, Morgan K, Zienkiewicz O (1987) Adaptive remeshing for compressible flow computations. J Comput Phys 72:449–466

    Article  MATH  Google Scholar 

  13. Löhner R, Morgan K, Peraire J (1986) Improved adaptive refinement strategies for the finite element aerodynamics configurations. AIAA Paper 86-0499

  14. Castro-Diaz M, Hecht F, Mohammadi B, Pironneau O (1997) Anisotropic unstructured mesh adaptation for flow simulations. Int J Numer Methods Fluids 25:475–491

    Article  MATH  MathSciNet  Google Scholar 

  15. Buscaglia G, Dari E (1997) Anisotropic mesh optimization and its application in adaptivity. Int J Numer Methods Eng 40:4119–4136

    Article  MATH  Google Scholar 

  16. Nadler E (1986) Piecewise linear best L 2 approximation on triangulations. In: Approximation theory V. Academic Press, New York, pp 499–502

  17. D’Azevedo E, Simpson R (1991) On optimal triangular meshes for minimizing the gradient error. Numer Math 59:321–348

    Article  MATH  MathSciNet  Google Scholar 

  18. Ciarlet P (1991) Basic error estimates for elliptic problems. In: Ciarlet P, Lions J (eds) Handbook of numerical analysis, vol II. Elsevier, Amsterdam, pp 17–351

    Google Scholar 

  19. Frey P, Alauzet F (2005) Anisotropic mesh adaptation for CFD computations. Comput Methods Appl Mech Eng 194:5068–5082

    Article  MATH  MathSciNet  Google Scholar 

  20. Bossen FJ, Heckbert PS (1996) A pliant method for anisotropic mesh generation. In: Proceedings of the 5th international meshing roundtable, pp 63–74

  21. Du Q, Wang D (2005) Anisotropic centroidal Voronoi tessellations and their applications. SIAM J Sci Comput 26:737–761

    Article  MATH  MathSciNet  Google Scholar 

  22. Li X, Shephard MS, Beall MW (2005) 3D anisotropic mesh adaptation by mesh modification. Comput Methods Appl Mech Eng 194:4915–4950

    Article  MATH  MathSciNet  Google Scholar 

  23. Dompierre J, Vallet M-G, Bourgault Y, Fortin M, Habashi WG (2002) Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part III: Unstructured meshes. Int J Numer Methods Fluids 39:675–702

    Article  MATH  MathSciNet  Google Scholar 

  24. Frey P (2000) About surface remeshing. In: Proceedings of the 9th international meshing roundtable, pp 123–136

  25. Frey P (2001) Yams: a fully automatic adaptive isotropic surface remeshing procedure. Tech. rep., INRIA. RT-0252

  26. Alliez P, de Verdière EC, Devillers O, Isenburg M (2003) Isotropic surface remeshing. In: Proceedings of the shape modeling international

  27. Shimada K, Yamada A, Itoh T (1997) Anisotropic triangular meshing of parametric surfaces via close packing of ellipsoidal bubbles. In: Proceedings of the 6th international meshing roundtable, pp 375–390

  28. Frey P, Borouchaki H (2003) Surface meshing using a geometric error estimate. Int J Numer Methods Eng 58:227–245

    Article  MATH  Google Scholar 

  29. Cheng S-W, Dey TK, Ramos EA, Wenger R (2006) Anisotropic surface meshing. In: Proceedings of the 17th ACM-SIAM symposium on discrete algorithms, pp 202–211

  30. Labelle F, Shewchuk JR (2003) Anisotropic Voronoi diagrams and guaranteed-quality anisotropic mesh generation. In: Proceedings of the 19th annual ACM symposium on computational geometry. ACM, pp 191–200

  31. Hansbro P (1995) Generalized Laplacian smoothing of unstructured grids. Commun Numer Methods Eng 11:455–464

    Article  Google Scholar 

  32. Alliez P, Cohen-Steiner D, Devillers O, Lévy B, Desbrun M (2003) Anisotropic polygonal remeshing. ACM Trans Graph 22:485–493

    Article  Google Scholar 

  33. Cheng H, Dey T, Edelsbrunner H, Sullivan J (2001) Dynamic skin triangulation. Discrete Comput Geom 25:525–568

    Article  MATH  MathSciNet  Google Scholar 

  34. Gray A, Abbena E, Salamon S (2006) Modern differential geometry of curves and surfaces with mathematica, 3rd edn. Chapman & Hall/CRC, London

    MATH  Google Scholar 

  35. Nash J (1956) The embedding problem for Riemannian manifolds. Ann Math 63:20–63

    Article  MathSciNet  Google Scholar 

  36. Morgan F (1998) Riemannian geometry: a Beginner’s guide, 2nd edn. A.K. Peters, Wellesley

    MATH  Google Scholar 

  37. Jiao X, Bayyana N (2008) Identification of C 1 and C 2 discontinuities for surface meshes in CAD. Comput Aided Des 40:160–175

    Article  Google Scholar 

  38. Ohtake Y, Belyaev AG, Seidel H-P (2002) Mesh smoothing by adaptive and anisotropic Gaussian filter. In: Vision, modeling and visualization, pp 203–210

  39. Aulisa E, Manservisi S, Scardovelli R (2004) A surface marker algorithm coupled to an area-preserving marker redistribution method for three-dimensional interface tracking. J Comput Phys 197:555–584

    Article  MATH  MathSciNet  Google Scholar 

  40. Du J, Fix B, Glimm J, Jia X, Li X, Li Y, Wu L (2006) A simple package for front tracking. J Comput Phys 213:613–628

    Article  MATH  MathSciNet  Google Scholar 

  41. Enright D, Fedkiw R, Ferziger J, Mitchell I (2002) A hybrid particle level set method for improved interface capturing. J Comput Phys 183:83–116

    Article  MATH  MathSciNet  Google Scholar 

  42. Leveque R (1996), High-resolution conservative algorithms for advection in incompressible flow. SIAM J Numer Anal 33:627–665

    Article  MATH  MathSciNet  Google Scholar 

  43. Ostromoukhov V, Donohue C, Jodoin P-M (2004) Fast hierarchical importance sampling with blue noise properties. ACM Trans Graph 23(3):488–495

    Article  Google Scholar 

  44. Enright D, Losasso F, Fedkiw R (2005) A fast and accurate semi-Lagrangian particle level set method. Comput Struct 83:479–490

    Article  MathSciNet  Google Scholar 

  45. Bargteil A, Goktekin T, O’Brien J, Strain J (2006) A semi-Lagrangian contouring method for fluid simulation. ACM Trans Graph 25:19–38

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF and DARPA under CARGO grant #0310446. X. Jiao was also supported by a subcontract from the Center for Simulation of Advanced Rockets of the University of Illinois at Urbana-Champaign funded by the U.S. Department of Energy through the University of California under subcontract B523819.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangmin Jiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, X., Colombi, A., Ni, X. et al. Anisotropic mesh adaptation for evolving triangulated surfaces. Engineering with Computers 26, 363–376 (2010). https://doi.org/10.1007/s00366-009-0170-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-009-0170-1

Keywords

Navigation