Skip to main content
Log in

Distortion and quality measures for validating and generating high-order tetrahedral meshes

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A procedure to quantify the distortion (quality) of a high-order mesh composed of curved tetrahedral elements is presented. The proposed technique has two main applications. First, it can be used to check the validity and quality of a high-order tetrahedral mesh. Second, it allows the generation of curved meshes composed of valid and high-quality high-order tetrahedral elements. To this end, we describe a method to smooth and untangle high-order tetrahedral meshes simultaneously by minimizing the proposed mesh distortion. Moreover, we present a \(p\)-continuation procedure to improve the initial configuration of a high-order mesh for the optimization process. Finally, we present several results to illustrate the two main applications of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Baart M, Mulder E (1987) A note on invertible two-dimensional quadratic finite element transformations. Commun Appl Numer M 3(6):535–539

    Article  MATH  Google Scholar 

  2. Bassi F, Rebay S (1997) High-order accurate discontinuous finite element solution of the 2D Euler equations. J Comput Phys 138(2):251–285

    Article  MATH  MathSciNet  Google Scholar 

  3. Branets L, Carey G (2005) Extension of a mesh quality metric for elements with a curved boundary edge or surface. J Comput Inf Sci Eng 5(4):302–308

    Article  Google Scholar 

  4. Cantwell C, Sherwin S, Kirby R, Kelly P (2011) From \(h\) to \(p\) efficiently: selecting the optimal spectral/\(hp\) discretisation in three dimensions. Math Model Nat Phenom 6(3):84–96

    Article  MATH  MathSciNet  Google Scholar 

  5. Cantwell C, Sherwin S, Kirby R, Kelly P (2011) From \(h\) to \(p\) efficiently: strategy selection for operator evaluation on hexahedral and tetrahedral elements. Comput Fluids 43(1):23–28

    Article  MATH  MathSciNet  Google Scholar 

  6. Dey S, O’Bara R, Shephard MS (2001) Curvilinear mesh generation in 3D. Comp Aided Des 33:199–209

    Article  Google Scholar 

  7. Dey S, Shephard MS, Flaherty JE (1997) Geometry representation issues associated with \(p\)-version finite element computations. Comput Meth Appl M 150(1–4):39–55

    Article  MATH  MathSciNet  Google Scholar 

  8. Escobar JM, Rodríguez E, Montenegro R, Montero G, González-Yuste JM (2003) Simultaneous untangling and smoothing of tetrahedral meshes. Comput Meth Appl Mech Eng 192(25):2775–2787

    Article  MATH  Google Scholar 

  9. Field D (1983) Algorithms for determining invertible two-and three-dimensional quadratic isoparametric finite element transformations. Int J Numer Meth Eng 19(6):789–802

    Article  MATH  MathSciNet  Google Scholar 

  10. Field D (2000) Qualitative measures for initial meshes. Int J Numer Meth Eng 47(4):887–906

    Article  MATH  Google Scholar 

  11. Gargallo-Peiró A (2014) Validation and generation of curved meshes for high-order unstructured methods. Ph.D. thesis, Universitat Politècnica de Catalunya, Barcelona

    Google Scholar 

  12. Gargallo-Peiró A, Roca X, Peraire J, Sarrate J (2013) Defining quality measures for mesh optimization on parameterized CAD surfaces. In: Proceedings of 21st international meshing roundtable, pp 85–102. Springer International Publishing, Berlin

  13. Gargallo-Peiró A, Roca X, Peraire J, Sarrate J (2014) Defining quality measures for validation and generation of high-order tetrahedral meshes. In: Proceedings 22nd international meshing roundtable, pp 109–126. Springer International Publishing, Berlin

  14. Gargallo-Peiró A, Roca X, Peraire J, Sarrate J (2014) Optimization of a regularized distortion measure to generate curved high-order unstructured tetrahedral meshes. Preprint

  15. Gargallo-Peiró A, Roca X, Sarrate J (2014) A surface mesh smoothing and untangling method independent of the CAD parameterization. Comput Mech 53(4):587–609. doi:10.1007/s00466-013-0920-1

    Article  MATH  MathSciNet  Google Scholar 

  16. George PL, Borouchaki H (2012) Construction of tetrahedral meshes of degree two. Int J Numer Meth Eng 90(9):1156–1182

    Article  MATH  MathSciNet  Google Scholar 

  17. Hesthaven J, Warburton T (2007) Nodal discontinuous Galerkin methods: algorithms, analysis, and applications. Texts in Applied Mathematics. Springer, Berlin http://books.google.es/books?id=APQkDOmwyksC

  18. Huerta A, Angeloski A, Roca X, Peraire J (2013) Efficiency of high-order elements for continuous and discontinuous Galerkin methods. Int J Numer Meth Eng 96:529–560. doi:10.1002/nme.4547

    Article  MathSciNet  Google Scholar 

  19. Huerta A, Roca X, Angeloski A, Peraire J (2012) Are high-order and hybridizable discontinuous Galerkin methods competitive? Oberwolfach Reports 9(1):485–487

    Google Scholar 

  20. Johnen A, Remacle JF, Geuzaine C (2012) Geometrical validity of curvilinear finite elements. In: Proceedings 20th international meshing roundtable, pp 255–271. Springer International Publishing, Berlin

  21. Johnen A, Remacle JF, Geuzaine C (2013) Geometrical validity of curvilinear finite elements. J Comput Phys 233:359–372

    Article  MathSciNet  Google Scholar 

  22. Kirby R, Sherwin S, Cockburn B (2012) To CG or to HDG: a comparative study. J Sci Comput 51(1):183–212

    Article  MATH  MathSciNet  Google Scholar 

  23. Knupp PM (2001) Algebraic mesh quality metrics. SIAM J Numer Anal 23(1):193–218

    MATH  MathSciNet  Google Scholar 

  24. Knupp PM (2003) Algebraic mesh quality metrics for unstructured initial meshes. Finite Elem Anal Des 39(3):217–241

    Article  MATH  Google Scholar 

  25. Knupp PM (2009) Label-invariant mesh quality metrics. In: Proceedings 18th international meshing roundtable, pp 139–155. Springer, Berlin

  26. Löhner R (2011) Error and work estimates for high-order elements. Int J Numer Meth Fluids 67(12):2184–2188

    Article  MATH  Google Scholar 

  27. Löhner R (2013) Improved error and work estimates for high-order elements. Int J Numer Meth Fluids 72:1207–1218

    Article  Google Scholar 

  28. Luo X, Shephard MS, O’Bara R, Nastasia R, Beall M (2004) Automatic \(p\)-version mesh generation for curved domains. Eng Comput 20(3):273–285

    Article  Google Scholar 

  29. Luo X, Shephard MS, Remacle JF (2002) The influence of geometric approximation on the accuracy of higher order methods. In: 8th International conference numerical grid generation in computational field simulations

  30. Luo X, Shephard MS, Remacle JF, O’Bara R, Beall M, Szabó B, Actis R (2002) \(P\)-version mesh generation issues. In: Proceedings 11th international meshing roundtable, pp 343–354. Springer, Berlin

  31. Mitchell A, Phillips G, Wachspress E (1971) Forbidden shapes in the finite element method. IMA J Appl Math 8(2):260

    Article  MATH  MathSciNet  Google Scholar 

  32. Persson PO, Peraire J (2009) Curved mesh generation and mesh refinement using lagrangian solid mechanics. In: Proceedings 47th AIAA

  33. Remacle JF, Toulorge T, Lambrechts J (2013) Robust untangling of curvilinear meshes. In: Proceedings 21st international meshing roundtable, pp 71–83. Springer International Publishing, Berlin

  34. Roca X, Gargallo-Peiró A, Sarrate J (2012) Defining quality measures for high-order planar triangles and curved mesh generation. In: Proceedings 20th international meshing roundtable, pp 365–383. Springer International Publishing, Berlin

  35. Roca, X., Ruiz-Gironés E, Sarrate J (2010) EZ4U: mesh generation environment. www-lacan.upc.edu/ez4u.htm

  36. Roca X, Sarrate J, Ruiz-Gironés E (2007) A graphical modeling and mesh generation environment for simulations based on boundary representation data. In: Communications in Numerical Methods of Enginering, Porto

  37. Salem A, Canann S, Saigal S (1997) Robust distortion metric for quadratic triangular 2D finite elements. Appl Mech Div ASME 220:73–80

    Google Scholar 

  38. Salem A, Canann S, Saigal S (2001) Mid-node admissible spaces for quadratic triangular arbitrarily curved 2D finite elements. Int J Numer Meth Eng 50(2):253–272

    Article  MATH  MathSciNet  Google Scholar 

  39. Salem A, Saigal S, Canann S (2001) Mid-node admissible space for 3D quadratic tetrahedral finite elements. Eng Comput 17(1):39–54

    Article  MATH  MathSciNet  Google Scholar 

  40. Sastry S, Shontz S, Vavasis S (2012) A log-barrier method for mesh quality improvement. In: Proceedings 20th international meshing roundtable, pp 329–346. Springer International Publishing, Berlin

  41. Sastry S, Shontz S, Vavasis S (2012) A log-barrier method for mesh quality improvement and untangling. Eng Comput (Published online ahead of print) doi:10.1007/s00366-012-0294-6

  42. Sevilla R, Fernández-Méndez S, Huerta A (2011) NURBS-enhanced finite element method (NEFEM): a seamless bridge between CAD and FEM. Arch Comput Meth Eng 18(4):441–484

    Article  Google Scholar 

  43. Shephard MS, Flaherty JE, Jansen K, Li X, Luo X, Chevaugeon N, Remacle JF, Beall M, O’Bara R (2005) Adaptive mesh generation for curved domains. Appl Numer Math 52(2–3):251–271

    Article  MATH  MathSciNet  Google Scholar 

  44. Sherwin S, Peiró J (2002) Mesh generation in curvilinear domains using high-order elements. Int J Numer Meth Eng 53(1):207–223

    Article  MATH  Google Scholar 

  45. Shewchuk J (2002) What is a good linear finite element? Interpolation, conditioning, anisotropy, and quality measures. Preprint

  46. Toulorge T, Geuzaine C, Remacle JF, Lambrechts J (2013) Robust untangling of curvilinear meshes. J Comput Phys 254:8–26

    Article  MathSciNet  Google Scholar 

  47. Vos PE, Sherwin S, Kirby R (2010) From \(h\) to \(p\) efficiently: implementing finite and spectral/\(hp\) element methods to achieve optimal performance for low- and high-order discretisations. J Comput Phys 229(13):5161–5181

    Article  MATH  MathSciNet  Google Scholar 

  48. Xie Z, Sevilla R, Hassan O, Morgan K (2012) The generation of arbitrary order curved meshes for 3D finite element analysis. Comput Mech 51:361–374

    Article  MathSciNet  Google Scholar 

  49. Xue D, Demkowicz L (2005) Control of geometry induced error in \(hp\) finite element (FE) simulations. I. Evaluation of FE error for curvilinear geometries. Intern J Numer Anal Model 2(3):283–300

    MATH  MathSciNet  Google Scholar 

  50. Yuan K, Huang Y, Pian T (1994) Inverse mapping and distortion measures for quadrilaterals with curved boundaries. Int J Numer Meth Eng 37(5):861–875

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Work partially sponsored by the Spanish Ministerio de Ciencia e Innovación (Grant DPI2011-23058), by the Ferran Sunyer i Balaguer Foundation (Grant FSB 2013), and by CUR from DIUE of the Generalitat de Catalunya and the European Social Fund (Grant FI-DGR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Gargallo-Peiró.

Additional information

A preliminary short version of this work appeared in the Proceedings of the 2013 International Meshing Roundtable [13].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gargallo-Peiró, A., Roca, X., Peraire, J. et al. Distortion and quality measures for validating and generating high-order tetrahedral meshes. Engineering with Computers 31, 423–437 (2015). https://doi.org/10.1007/s00366-014-0370-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-014-0370-1

Keywords

Navigation