Skip to main content
Log in

Multiscale computation for bioartificial soft tissues with complex geometries

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The mechanical function of soft collagenous tissues is inherently multiscale, with the tissue dimension being in the centimeter length scale and the underlying collagen network being in the micrometer length scale. This paper uses a volume averaging multiscale model to predict the collagen gel mechanics. The model is simulated using a multiscale component toolkit that is capable of dealing with any 3D geometries. Each scale in the multiscale model is treated as an independent component that exchanges the deformation and average stress information through a scale-linking operator. An arterial bifurcation was simulated using the multiscale model, and the results demonstrated that the mechanical response of the soft tissues is strongly sensitive to the network orientation and fiber-to-fiber interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Neidert MR, Tranquillo RT (2006) Tissue-engineered valves with commissural alignmnet. Tissue Eng 12(4):891–903

    Article  Google Scholar 

  2. Tranquillo RT (2006) The tissue-engineered small diameter artery. Ann NY Acad Sci 961:251–254

    Article  Google Scholar 

  3. Guilak F, Butler DL, Goldstein SA, Mooney DJ (2003) Functional tissue engineering. Springer, New York

    Google Scholar 

  4. Roeder BA, Kokini K, Sturgis JE, Robinson JP, Voytik-Harbin SL (2002) Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J Biomech Eng 124:214–222

    Article  Google Scholar 

  5. Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York

  6. Drew DA (1971) Averaged field equations for two-phase media. Stud in Appl Math 2:122–166

    Google Scholar 

  7. Whitaker S (1986) Flow in porous media I: a theoritical derivation of Darcy’s law. Transp Porous Media 1:3–25

    Article  Google Scholar 

  8. Driessen NJB, Bouten CVC, Baaijens FPT (2005) A structrual constitutive model for collagenous cardiovascular tissues incoporating the angular fiber distribution. J Biomech Eng 127(3):494–503

    Article  Google Scholar 

  9. Agoram B, Barocas VH (2004) Coupled macroscopic and microscopic scale modeling of fibrillar tissues and tissue equivalent. J Biomech Eng 123(4):362–369

    Article  Google Scholar 

  10. Stylianopoulos T, Barocas VH (2007) Volume Averaging Theory for the Study of the Mechanics of Collagen Networks. Comput Meth Appl Mech Eng 196(31–32):2981–2990

    Article  MATH  MathSciNet  Google Scholar 

  11. Stylianopoulos T, Barocas VH (2007) Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls. J Biomech Eng 129(4):611–618

    Article  Google Scholar 

  12. Muller J, Sahni O, Jansen KE, Shephard MS, Taylor CA (2005) A tool for the efficient FE-simulation of cardio-vascular flow. Proc 2nd NAFEMS CFD Seminar: Simulation of Complex Flows, pp 1–10

  13. Ku JP, Draney MT, Arko FR, Lee WA, Chan FP, Pelc NJ, Zarins CK, Taylor CA (2002) In viro validation of numerical prediction of blood flow in arterial bypass grafts. Ann Biomed Eng 30:743–752

    Article  Google Scholar 

  14. Parker D, Taylor CA, Wang K (1998) Imaged based 3D solid model construction of human arteries for blood flow simulations. In: Proceedings of the 1998 IEEE biomedical engineering meeting. HongKong, China

  15. Billiar KL, Sacks MS (2000) Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: part II—a structural constitutive model. J Biomech Eng 122:327–325

    Article  Google Scholar 

  16. Chandran PL, Barocas VH (2007) Deterministic material-based averaging theory model of collagen gel mechanics. J Biomech Eng 129(2):137–147

    Article  Google Scholar 

  17. Oda M, Iwashita AA (1999) Mechanics of granular materials. Brookfield, Rotterdam

    Google Scholar 

  18. Nuggehally MA, Picu CR, Shephard MS, Fish J (2007) Adaptive model selection procedure for concurrent multiscale problems. J Multiscale Comput Eng 5:369–386

    Article  Google Scholar 

  19. Shephard MS, FrantzDale B, Nuggehally M, Beall MW, Klass O (2006) Coordinating models in multiscale simulations

  20. Parasolid Inc. http://www.ugs.com/products/open/parasolid

  21. Spatial Inc. http://www.spatial.com/products/

  22. Garimella R, Shephard MS (2000) Boundary layer mesh generation for viscous flow simulations in complex geometric domain. Int J Numer Meth Eng 49(1–2):193–218

    Article  MATH  Google Scholar 

  23. Luo XJ, Shephard MS, Obara RM, Nastasia R, Beall MW (2004) Automatic p-version mesh generation for curved domains. Eng Comput 20:265–285

    Article  Google Scholar 

  24. Luo XJ, Shephard MS, Yin LZ, Obara RM, Nastasia R, Beall MW (2006) Construction of Near Optimal Meshes for 3-D Curved Domains with Thin Sections and Singularities for p-version Method. Eng Comput (in press)

  25. Beall MW, Shephard MS (1997) A general topology-based mesh data structure. Int J Numer Meth Eng 40(9):1573–1596

    Article  MathSciNet  Google Scholar 

  26. O’Bara RM, Beall MW, Shephard MS (2002) Attribute management system ofr engineering analysis. Eng Comput34:899–912

    Google Scholar 

  27. Li XR, Shephard MS, Beall MW (2003) Accounting for curved domains in mesh adaptation. Int J Numer Meth Eng 150:247–276

    Article  Google Scholar 

  28. Li XR, Shephard MS, Beall MW (2003) Anisotropic mesh adaptation by mesh modifications. Comp Meth Appl Mech Eng 194(48–49):4915–4950

    MathSciNet  Google Scholar 

  29. Luo XJ (2005) An automatic adaptive directional variable p-version method in 3-D curved domains. Dissertation, Rensselaer Polytechnic Institute

  30. Wilkinson B, Allen M (2005) Parallel Programming. Prentice Hall, Englewood Cliffs

  31. Pacheco PS (1997) A user’s Guide to MPI

  32. Babuska I, Rheinbold WC (1979) Analysis of optimal finite element meshes is R 1. Math Comput 33(146):435–463

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant 1 R01 EB0005813-01. T. Stylianopoulos was supported by a Doctoral Dissertation Fellowship from the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Juan Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, XJ., Stylianopoulos, T., Barocas, V.H. et al. Multiscale computation for bioartificial soft tissues with complex geometries. Engineering with Computers 25, 87–95 (2009). https://doi.org/10.1007/s00366-008-0111-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-008-0111-4

Keywords

Navigation