Skip to main content
Log in

Automated adaptive cardiovascular flow simulations

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

We present an automatic adaptive procedure to perform blood flow simulations in the cardiovascular system. The procedure allows the user to start with subject-specific data collected through clinical measurements, like magnetic resonance imaging (MRI) data, and evaluate physiological parameters of interest, like flow distribution, pressure variations, wall shear stress, in an automatic and efficient manner. The process involves construction of geometric models of blood vessels, specification of flow conditions and application of an adaptive flow solver. The latter is based on incompressible Navier–Stokes equations using adaptive spatial discretization (meshing) techniques. In this article, we demonstrate the method on a model of a human abdominal aorta of a normal subject with geometry and flow rates assimilated from MRI data. The results obtained show that boundary layer mesh adaptivity offers a better alternative leading to more accurate predictions, especially for key physiological quantities like wall shear stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ku DN (1997) Blood flow in arteries. Annu Rev Fluid Mech 29:399–434

    Article  MathSciNet  Google Scholar 

  2. Taylor CA, Draney MT (2004) Experimental and computational methods in cardiovascular fluid mechanics. Annu Rev Fluid Mech 36:197–231

    Article  MathSciNet  Google Scholar 

  3. Perktold K, Resch M, Peter RO (1991) Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation. J Biomech 24:409–420

    Article  Google Scholar 

  4. Moore JA, Rutt BK, Karlik SJ, Yin K, Ethier CR (1999) Computational blood flow modeling based on in vivo measurements. Ann Biomed Eng 27:627–640

    Article  Google Scholar 

  5. Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comput Meth Appl Mech Eng 158:155–196

    Article  MATH  MathSciNet  Google Scholar 

  6. Taylor CA, Draney M, Ku J, Parker D, Steel B, Wang K, Zarins C (1999) Predictive medicine: computational techniques in therapeutic decision-making. Comput Aided Surg 4 (5):231–247

    Article  Google Scholar 

  7. Stuhne GR, Steinman DA (2004) Finite-element modeling of the hemodynamics of stented aneurysms. Trans. ASME J Biomech Eng 126(3):382–387

    Article  Google Scholar 

  8. Steinman DA, Taylor CA (2005) Flow imaging and computing: large artery hemodynamics. Ann Biomed Eng 33 (12):1704–1709

    Article  Google Scholar 

  9. Friedman MH, Giddens DP (2005) Blood flow in major blood vessels-modeling and experiments. Ann Biomed Eng 33(12):1710–1713

    Article  Google Scholar 

  10. Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Meth Appl Mech Eng 195:5685–5706

    Article  MATH  MathSciNet  Google Scholar 

  11. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Meth Appl Mech Eng 195:3776–3796

    Article  MATH  MathSciNet  Google Scholar 

  12. Garimella RV, Shephard MS (2000) Boundary layer mesh generation for viscous flow simulations. Int J Numer Meth Eng 49:193–218

    Article  MATH  Google Scholar 

  13. Sahni O, Müller J, Jansen KE, Shephard MS, Taylor CA (2006) Efficient anisotropic adaptive discretization of the cardiovascular system. Comput Meth Appl Mech Eng 195:5634–5655

    Article  MATH  Google Scholar 

  14. Tang BT, Cheng CP, Draney MT, Wilson NM, Tsao PS, Herfkens RJ, Taylor CA (2006) Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Am J Physiol Heart Circ Physiol 291(2):H668–H676

    Article  Google Scholar 

  15. O’Bara RM, Beall MW, Shephard MS (2002) Attribute management system for engineering analysis. Eng Comput 4:339–351

    Article  Google Scholar 

  16. Shephard MS, Beall MW, O’Bara RM, Webster BE (2004) Toward simulation-based design. Finite Elem Anal Des 40:1575–1598

    Article  Google Scholar 

  17. Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, New York

    MATH  Google Scholar 

  18. Verfürth R (1996) A review of posteriori error estimation and adaptive mesh-refinement techniques. Teubner-Wiley, Stuttgart

    MATH  Google Scholar 

  19. Bänsch E (1991) Local refinements in 2 and 3 dimensions. Impact Comput Sci Eng 3:181–191

    Article  MATH  Google Scholar 

  20. de Cougny HL, Shephard MS (1999) Parallel refinement and coarsening of tetrahedral meshes. Int J Numer Meth Eng 46:1101–1125

    Article  MATH  Google Scholar 

  21. George P-L, Borouchaki H, Laug P (2002) An efficient algorithm for 3D adaptive meshing. Adv Eng Softw 33:377–387

    Article  MATH  Google Scholar 

  22. George P-L (1999) Tet meshing: construction, optimization and adaptation. In: Proceedings of eighth international meshing roundtable, South Lake Tao

  23. Kunert G (2002) Toward anisotropic mesh construction and error estimation in the finite element method. Numer Methods Partial Differ Equ 18:625–648

    Article  MATH  MathSciNet  Google Scholar 

  24. Borouchaki H, George P-L, Mohammadi B (1997) Delaunay mesh generation governed by metric specifications. Part II. Applications. Finite Elem Anal Des 25:85–109

    Article  MATH  MathSciNet  Google Scholar 

  25. Sahni O, Jansen KE, Shephard MS, Taylor CA, Beall MW (2008) Adaptive boundary layer meshing for viscous flow simulations. Eng Comput 24:267–285

    Article  Google Scholar 

  26. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Meth Appl Mech Eng 32:199–259

    Article  MATH  MathSciNet  Google Scholar 

  27. Whiting CH, Jansen KE (2001) A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis. Int J Numer Meth Fluids 35:93–116

    Article  MATH  Google Scholar 

  28. Jansen KE, Whiting CH, Hulbert GM (1999) A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Meth Appl Mech Eng 190:305–319

    Article  MathSciNet  Google Scholar 

  29. Shakib F http://www.acusim.com

  30. Li X, Shephard MS, Beall MW (2003) Accounting for curved domains in mesh adaptation. Int J Numer Meth Eng 58:247–276

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of this work by NSF grants ACI-0205741 and 0749152. We would also like to acknowledge that some of the computations carried in this study were performed on parallel computers obtained through NSF grant 0420703. The results presented in this article made use of the linear algebra library provided by ACUSIM Software Inc. The attribute management system used in this study was provided by Simmetrix Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onkar Sahni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahni, O., Jansen, K.E., Taylor, C.A. et al. Automated adaptive cardiovascular flow simulations. Engineering with Computers 25, 25–36 (2009). https://doi.org/10.1007/s00366-008-0110-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-008-0110-5

Keywords

Navigation