Skip to main content
Log in

Hexahedral mesh generation for biomedical models in SCIRun

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Biomedical simulations are often dependent on numerical approximation methods, including finite element, finite difference, and finite volume methods, to model the varied phenomena of interest. An important requirement of the numerical approximation methods above is the need to create a discrete decomposition of the model geometry into a ‘mesh’. Historically, the generation of these meshes has been a critical bottleneck in efforts to efficiently generate biomedical simulations which can be utilized in understanding, planning, and diagnosing biomedical conditions. In this paper we discuss a methodology for generating hexahedral meshes for biomedical models using an algorithm implemented in the SCIRun Problem Solving Environment. The method is flexible and can be utilized to build up conformal hexahedral meshes ranging from models defined by single isosurfaces to more complex geometries with multi-surface boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

References

  1. ANSYS (2007) ANSYS, http://www.ansys.com

  2. Benzley SE, Perry E, Merkley K, Clark B (1995) A comparison of all hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic analysis. In: Proceedings, 4th international meshing roundtable. Sandia National Laboratories, pp 179–191

  3. Borden MJ, Shepherd JF, Benzley SE (2002) Mesh cutting: fitting simple all-hexahedral meshes to complex geometries. In: Proceedings, 8th international society of grid generation conference

  4. Brewer M, Freitag-Diachin L, Knupp P, Leurent T, Melander DJ (2003) The MESQUITE mesh quality improvement toolkit. In: Proceedings, 12th international meshing roundtable. Sandia National Laboratories, pp 239–250

  5. Bussler ML, Ramesh A (1993) The eight-node hexahedral elements in FEA of part designs. In: Foundry management and technology, pp 26–28

  6. Cifuentes AO, Kalbag A (1992) A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis. Finite Elem Anal Des 12(3–4):313–318

    Article  Google Scholar 

  7. The CUBIT geometry and mesh generation toolkit (2007) Sandia National Laboratories, http://cubit.sandia.gov/

  8. Freitag L (1997) On combining Laplacian and optimization-based mesh smoothing techniques. AMD trends in unstructured mesh generation. ASME 220:37–43

    Google Scholar 

  9. Freitag LA, Plassmann P (2000) Local optimization-based simplicial mesh untangling and improvement. Int J Numer Methods Eng 49(1):109–125

    Google Scholar 

  10. Johnson C, MacLeod R, Parker S, Weinstein D (2004) Biomedical computing and visualization software environments. Commun ACM 47(11):64–71

    Article  Google Scholar 

  11. Jones TR, Durand F, Desbrun M (2003) Non-iterative, feature-preserving mesh smoothing. ACM Trans Graph 22(3):943–949

    Article  Google Scholar 

  12. Knupp P, Mitchell SA (1999) Integration of mesh optimization with 3D all-hex mesh generation, LDRD subcase 3504340000, final report. SAND 99-2852, October 1999

  13. Knupp PM (2003) Hexahedral and tetrahedral mesh shape optimization. Int J Numer Methods Eng 58(1):319–332

    Article  MATH  MathSciNet  Google Scholar 

  14. Knupp PM (2000) Hexahedral mesh untangling and algebraic mesh quality metrics. In: Proceedings, 9th international meshing roundtable. Sandia National Laboratories, pp 173–183

  15. Lorenson WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 21(4):163–169. Proceedings of SIGGRAPH ’87

    Article  Google Scholar 

  16. Loriot M (2006) TetMesh-GHS3D v3.1 the fast, reliable, high quality tetrahedral mesh generator and optimiser, http://www.simulog.fr/mesh/tetmesh3p1d-wp.pdf

  17. MESQUITE (2005) The mesh quality improvement toolkit, terascale simulation tools and technology center (TSTT), http://www.tstt-scidac.org/research/mesquite.html

  18. Parker S, Weinstein D, Johnson C (1997) The SCIRun computational steering software system. In: Arge E, Bruaset A, Langtangen H (eds) Modern software tools in scientific computing. Birkhauser Press, Boston, pp 1–40

    Google Scholar 

  19. Scheidegger C, Schreiner J (2007) Afront, http://sourceforge.net/projects/afront/

  20. Schneiders R (1996) A grid-based algorithm for the generation of hexahedral element meshes. Eng Comput 12:168–177

    Article  Google Scholar 

  21. Schneiders R (1997) An algorithm for the generation of hexahedral element meshes based on an octree technique. In: Proceedings, 6th international meshing roundtable. Sandia National Laboratories, pp 183–194

  22. SCIRun (2007) A scientific computing problem solving environment, scientific computing and imaging institute (SCI), download from http://software.sci.utah.edu/scirun.html

  23. Scott MA, Earp MN, Benzley SE, Stephenson MB (2005) Adaptive sweeping techniques. In: Proceedings, 14th international meshing roundtable. Sandia National Laboratories, pp 417–432

  24. Shephard MS, Georges MK (1991) Three-dimensional mesh generation by finite octree technique. Int J Numer Methods Eng 32:709–749

    Article  MATH  Google Scholar 

  25. Shepherd JF (2007) Topologic and geometric constraint-based hexahedral mesh generation. Published Doctoral Dissertation, University of Utah

  26. Shepherd JF, Mitchell SA, Knupp P, White DR (2000) Methods for multisweep automation. In: Proceedings, 9th international meshing roundtable. Sandia National Laboratories, pp 77–87

  27. The verdict mesh verification library (2007) Sandia National Laboratories, http://cubit.sandia.gov/verdict.html

  28. Vachal P, Garimella RV, Shashkov MJ (2002) Mesh untangling. LAU-UR-02-7271, T-7 Summer Report 2002

  29. Weingarten VI (1994) The controversy over hex or tet meshing. Machine Design, pp 74–78, April 18

  30. White DR, Leland RW, Saigal S, Owen SJ (2001) The meshing complexity of a solid: an introduction. In: Proceedings, 10th international meshing roundtable. Sandia National Laboratories, pp 373–384

  31. White DR, Saigal S, Owen SJ (2003) Meshing complexity of single part CAD models. In: Proceedings, 12th international meshing roundtable. Sandia National Laboratories, pp 121–134

  32. Yerry MA, Shephard MS (1984) Three-dimensional mesh generation by modified octree technique. Int J Numer Methods Eng 20:1965–1990

    Article  MATH  Google Scholar 

  33. Zhang Y, Bajaj C (2005) Adaptive and quality quadrilateral/hexahedral meshing from volumetric imaging data. In: Proceedings, 13th international meshing roundtable. Sandia National Laboratories, pp 365–376

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason F. Shepherd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shepherd, J.F., Johnson, C.R. Hexahedral mesh generation for biomedical models in SCIRun. Engineering with Computers 25, 97–114 (2009). https://doi.org/10.1007/s00366-008-0108-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-008-0108-z

Keywords

Navigation